All‐Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications

材料科学 压阻效应 灵敏度(控制系统) 可穿戴计算机 可穿戴技术 纳米技术 航程(航空) 碳纤维 光电子学 电子工程 计算机科学 复合材料 嵌入式系统 复合数 工程类
作者
Qixuan Xiang,Guanjie Zhao,Tao Tang,Hao Zhang,Zhiyuan Liu,Xianglong Zhang,Yaping Zhao,Huijun Tan
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (15) 被引量:10
标识
DOI:10.1002/adfm.202418706
摘要

Abstract Piezoresistive sensors are indispensable in applications such as healthcare monitoring, artificial intelligence, and advanced communication systems. However, achieving wearable sensors that offer both high sensitivity and a wide linear range remains a significant challenge. Here, an all‐carbon piezoresistive sensor is presented, named, featuring high biocompatibility, chemical stability, environmental sustainability, and a straightforward fabrication process. This sensor, integrating a double‐sided pyramidal carbon aerogel (DPA) as the sensing layer, a silicone frame as the elastic support (ES), and superhydrophobic graphene‐coated nylon fabric as the breathable conductive substrate (BCS), was named as DPA‐ES@BCS. Finite element analysis confirms that the synergistic interaction between the DPA and silicone frame enhances the sensor's sensitivity while extending its linear range. This multiscale design achieves an exceptional sensitivity of 37.3 kPa −1 , a broad linear detection ranges from 0 to 1.4 MPa, and outstanding stability over 30 000 cycles. Additionally, the high‐performance wearable sensor is well‐suited for real‐time physiological signal monitoring and demonstrates exceptional capability in voice recognition, accurately distinguishing words using machine learning algorithms. Moreover, the DPA‐ES@BCS sensor array shows great potential for enhancing information security through dual‐factor authentication. This approach not only advances the piezoresistive performance of all‐carbon sensors but also provides a strong foundation for developing next‐generation sensor technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hony完成签到,获得积分10
4秒前
斯文败类应助郭子仪采纳,获得30
4秒前
5秒前
Thien应助lyp采纳,获得10
5秒前
5秒前
yyanxuemin919发布了新的文献求助10
6秒前
研友_Lmb15n发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
上帝粒子应助Liu采纳,获得50
9秒前
李伟峰完成签到,获得积分10
9秒前
10秒前
wy发布了新的文献求助10
10秒前
冷酷莫言发布了新的文献求助10
11秒前
qwer发布了新的文献求助10
11秒前
12秒前
嘿嘿发布了新的文献求助10
12秒前
jiabu完成签到 ,获得积分10
13秒前
学术费物发布了新的文献求助10
13秒前
13秒前
律香川照之完成签到,获得积分10
15秒前
看100篇文献完成签到,获得积分10
16秒前
sylus发布了新的文献求助10
17秒前
太兰完成签到 ,获得积分10
18秒前
wang完成签到,获得积分20
18秒前
19秒前
spc68应助chen采纳,获得10
19秒前
英姑应助暗中讨饭采纳,获得10
22秒前
只争朝夕应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
23秒前
wanci应助科研通管家采纳,获得10
23秒前
领导范儿应助qwer采纳,获得10
23秒前
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432