Machine learning reveals connections between preclinical type 2 diabetes subtypes and brain health

2型糖尿病 医学 糖尿病 疾病 萧条(经济学) 重性抑郁障碍 焦虑 2型糖尿病 生物信息学 内科学 精神科 认知 内分泌学 生物 经济 宏观经济学
作者
Yi Fan,Jing Yuan,Fei Han,Judith Somekh,Mor Peleg,Fei Wu,Zhilong Jia,Yicheng Zhu,Zhengxing Huang
出处
期刊:Brain [Oxford University Press]
被引量:1
标识
DOI:10.1093/brain/awaf057
摘要

Abstract Previous research has established Type 2 Diabetes Mellitus as a significant risk factor for various disorders, adversely impacting human health. While evidence increasingly links type 2 diabetes to cognitive impairment and brain disorders, understanding the causal effects of its preclinical stage on brain health is yet to be fully known. This knowledge gap hinders advancements in screening and preventing neurological and psychiatric diseases. To address this gap, we employed a robust machine learning algorithm (Subtype and Stage Inference, SuStaIn) with cross-sectional clinical data from the UK Biobank (20,277 preclinical type 2 diabetes participants and 20,277 controls) to identify underlying subtypes and stages for preclinical type 2 diabetes. Our analysis revealed one subtype distinguished by elevated circulating leptin levels and decreased leptin receptor levels, coupled with increased body mass index, diminished lipid metabolism, and heightened susceptibility to psychiatric conditions such as anxiety disorder, depression disorder, and bipolar disorder. Conversely, individuals in the second subtype manifested typical abnormalities in glucose metabolism, including rising glucose and hemoglobin A1c levels, with observed correlations with neurodegenerative disorders. Over ten-year follow-up of these individuals revealed differential declines in brain health and significant clinical outcome disparities between subtypes. The first subtype exhibited a faster progression and higher risk for psychiatric conditions, while the second subtype was associated with more severe progression in Alzheimer’s disease, Parkinson’s disease, and a faster progression to type 2 diabetes. Our findings highlight that monitoring and addressing the brain health needs of individuals in the preclinical stage of type 2 diabetes is imperative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助路过的骑士采纳,获得10
1秒前
3秒前
4秒前
大个应助zdd采纳,获得10
4秒前
Rondab应助力量采纳,获得30
5秒前
7秒前
归尘发布了新的文献求助10
7秒前
叶寻发布了新的文献求助10
9秒前
易小名完成签到 ,获得积分10
10秒前
钟鸿盛Domi发布了新的文献求助10
11秒前
13秒前
14秒前
科研通AI2S应助Wangdx采纳,获得10
16秒前
大气的雅山完成签到,获得积分10
16秒前
yejiafeng发布了新的文献求助10
16秒前
丘比特应助子车嘉懿采纳,获得10
17秒前
niuniu完成签到,获得积分10
18秒前
Ann发布了新的文献求助10
19秒前
影儿发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
niuniu发布了新的文献求助10
24秒前
yejiafeng完成签到,获得积分10
25秒前
25秒前
MMMMathilda23发布了新的文献求助10
25秒前
今后应助钟鸿盛Domi采纳,获得10
26秒前
Wangdx发布了新的文献求助10
27秒前
令狐天与完成签到,获得积分10
28秒前
电池博士完成签到,获得积分10
28秒前
sss312发布了新的文献求助10
28秒前
影儿完成签到,获得积分20
32秒前
MMMMathilda23完成签到,获得积分10
34秒前
34秒前
无花果应助王宇杰采纳,获得10
37秒前
37秒前
Lucas应助csj采纳,获得10
38秒前
科研通AI5应助活泼万言采纳,获得10
41秒前
wanwan应助灰底爆米花采纳,获得10
42秒前
yufeng完成签到 ,获得积分10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644