Metabolic Mechanism of Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cell Regulated by Magnetoelectric Microenvironment

间充质干细胞 细胞生物学 骨髓 干细胞 机制(生物学) 化学 生物 免疫学 物理 量子力学
作者
Han Zhao,Fangyu Zhu,Yusi Guo,Xuliang Deng,Wenwen Liu
出处
期刊:Small structures [Wiley]
标识
DOI:10.1002/sstr.202400466
摘要

Conventional methods to stimulate the metabolism of bone marrow mesenchymal stem cells (BMSCs) for osteogenic differentiation typically involve systemic mobilization, which faces challenges including limited in vivo half‐life, lack of selectivity, and potential side‐effects. Therefore, localized modulation of BMSCs represents a more efficient and safer alternative. However, few studies have explored the regulation of a localized stimuli‐responsive microenvironment to activate osteogenic differentiation via mitochondrial pathways and clarified its underlying mechanisms. Herein, a novel strategy to accelerate the metabolic switch of BMSCs in tissue defects through targeted modulation using built‐in magnetoelectric biomaterials is proposed. BMSCs cultured in the magnetoelectric microenvironment exhibited an increased mitochondrial membrane potential, the highest oxygen consumption rate and enhanced adenosine triphosphate production. Furthermore, BMSCs in the magnetoelectric microenvironment demonstrated a successful metabolic switch of energy resource from glycolysis to oxidative phosphorylation, indicating a strong tendency toward osteogenic differentiation. The highest multiclass metabolite profile, indicating the most active metabolic state, was shown in rats cranial defect model treated with magnetoelectric microenvironment. This research introduces a novel approach to accelerate bone defect repair by targeted modulation of BMSC mitochondria with magnetoelectric microenvironment and provides a promising direction for exploring the intrinsic mechanisms through which the magnetoelectric microenvironment promotes bone regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
galaxy完成签到 ,获得积分10
刚刚
平生完成签到 ,获得积分10
刚刚
zcydbttj2011发布了新的文献求助10
1秒前
清爽沛槐完成签到,获得积分10
4秒前
sure完成签到 ,获得积分10
4秒前
5秒前
5秒前
7秒前
8秒前
8秒前
10秒前
xiaixax发布了新的文献求助10
10秒前
金桔完成签到,获得积分10
10秒前
11秒前
大黄发布了新的文献求助10
11秒前
香蕉海白发布了新的文献求助10
12秒前
12秒前
zimmermen发布了新的文献求助10
13秒前
小马甲应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得10
15秒前
刘荻萩应助科研通管家采纳,获得20
15秒前
Orange应助科研通管家采纳,获得10
16秒前
我是老大应助Aaaaguo采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
是榤啊发布了新的文献求助10
16秒前
Leslie发布了新的文献求助10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
所所应助cskk采纳,获得10
21秒前
23秒前
Yancy发布了新的文献求助10
23秒前
bean完成签到,获得积分10
24秒前
想水SCI完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407