Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: a pilot study

医学 肾病科 多参数磁共振成像 内科学 深度学习 肿瘤科 医学物理学 人工智能 癌症 前列腺癌 计算机科学
作者
Guiying Du,Lihua Chen,Baole Wen,Yujun Lu,Fangjie Xia,Lei Zhu,Shen Wen
出处
期刊:International Urology and Nephrology [Springer Nature]
标识
DOI:10.1007/s11255-024-04300-5
摘要

To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with clinical characteristics. Multiparametric abdominal MRI was performed on 47 pathologically confirmed RCC patients between 2019 and 2023. Preoperative MRI was performed on all patients to assess their clinical characteristics. The CNN model was developed and validated to assess the predictive value of b value images, combined b value images, apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and their parametric maps for RCC aggressiveness. The least absolute shrinkage and selection operator (LASSO) regression was used to identify clinical features highly correlated with RCC aggressiveness. These clinical features were combined with selected b values to develop a fusion model. All models were evaluated using receiver operating characteristic (ROC) curve analysis. A total of 47 patients (mean age, 56.17 ± 1.70 years; 37 men, 10 women) were evaluated. LASSO regression identified renal sinus/perirenal fat invasion, tumor stage, and tumor size as the most significant clinical features. The combined b values of b = 0,1000 achieved an area under the curve (AUC) of 0.642 (95% CI: 0.623–0.661), and b = 0,100,1000 achieved an AUC of 0.657 (95% CI: 0.647–0.667). The fusion model combining clinical features with b = 0,1000 yielded the highest performance with an AUC of 0.861 (95% CI: 0.667–0.992), demonstrating superior predictive accuracy compared to the other models. Deep learning using a CNN fusion model, integrating multiple b value images and clinical features, could effectively promote the preoperative prediction of tumor aggressiveness in RCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助fvxbgv采纳,获得10
3秒前
15373601956完成签到,获得积分10
4秒前
6秒前
7秒前
SciGPT应助丹丹采纳,获得10
8秒前
8秒前
8秒前
10秒前
10秒前
11秒前
愉快白猫发布了新的文献求助10
13秒前
李思超完成签到,获得积分10
14秒前
14秒前
orixero应助青菜采纳,获得10
14秒前
不配.应助珍珠妈妈采纳,获得10
15秒前
15秒前
hu发布了新的文献求助10
15秒前
平安喜乐完成签到 ,获得积分10
15秒前
打打应助机灵大炮采纳,获得10
16秒前
汉堡包应助偶然采纳,获得10
16秒前
zackcai发布了新的文献求助10
16秒前
haizz发布了新的文献求助10
17秒前
17秒前
Ria发布了新的文献求助10
17秒前
wyy完成签到,获得积分10
18秒前
小凡凡完成签到,获得积分10
19秒前
tRNA完成签到,获得积分10
19秒前
平安喜乐关注了科研通微信公众号
20秒前
woollen2022完成签到,获得积分10
21秒前
无有完成签到,获得积分10
22秒前
23秒前
完美的天空应助面圈采纳,获得10
23秒前
25秒前
我是老大应助xjq采纳,获得10
26秒前
aa121599发布了新的文献求助10
26秒前
美清完成签到,获得积分20
26秒前
27秒前
27秒前
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3237842
求助须知:如何正确求助?哪些是违规求助? 2883301
关于积分的说明 8229668
捐赠科研通 2551449
什么是DOI,文献DOI怎么找? 1379799
科研通“疑难数据库(出版商)”最低求助积分说明 648872
邀请新用户注册赠送积分活动 624538