Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: a pilot study

医学 肾病科 多参数磁共振成像 内科学 深度学习 肿瘤科 医学物理学 人工智能 癌症 前列腺癌 计算机科学
作者
Guiying Du,Lihua Chen,Baole Wen,Yujun Lu,Fangjie Xia,Qian Liu,Shen Wen
出处
期刊:International Urology and Nephrology [Springer Science+Business Media]
标识
DOI:10.1007/s11255-024-04300-5
摘要

To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with clinical characteristics. Multiparametric abdominal MRI was performed on 47 pathologically confirmed RCC patients between 2019 and 2023. Preoperative MRI was performed on all patients to assess their clinical characteristics. The CNN model was developed and validated to assess the predictive value of b value images, combined b value images, apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and their parametric maps for RCC aggressiveness. The least absolute shrinkage and selection operator (LASSO) regression was used to identify clinical features highly correlated with RCC aggressiveness. These clinical features were combined with selected b values to develop a fusion model. All models were evaluated using receiver operating characteristic (ROC) curve analysis. A total of 47 patients (mean age, 56.17 ± 1.70 years; 37 men, 10 women) were evaluated. LASSO regression identified renal sinus/perirenal fat invasion, tumor stage, and tumor size as the most significant clinical features. The combined b values of b = 0,1000 achieved an area under the curve (AUC) of 0.642 (95% CI: 0.623–0.661), and b = 0,100,1000 achieved an AUC of 0.657 (95% CI: 0.647–0.667). The fusion model combining clinical features with b = 0,1000 yielded the highest performance with an AUC of 0.861 (95% CI: 0.667–0.992), demonstrating superior predictive accuracy compared to the other models. Deep learning using a CNN fusion model, integrating multiple b value images and clinical features, could effectively promote the preoperative prediction of tumor aggressiveness in RCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mmk0318发布了新的文献求助10
1秒前
Han发布了新的文献求助10
1秒前
糖豆完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
大道发布了新的文献求助10
5秒前
7秒前
7秒前
张文静发布了新的文献求助10
7秒前
糖豆发布了新的文献求助10
8秒前
lbw完成签到 ,获得积分10
10秒前
月颜发布了新的文献求助10
11秒前
汉堡包应助无痕采纳,获得10
11秒前
在水一方应助dreamboat采纳,获得10
12秒前
12秒前
gsgg发布了新的文献求助10
13秒前
大道完成签到,获得积分20
15秒前
15秒前
15秒前
19秒前
整齐的雨发布了新的文献求助10
19秒前
史小霜发布了新的文献求助10
20秒前
Akim应助dreamboat采纳,获得10
21秒前
23秒前
nini完成签到,获得积分10
23秒前
大模型应助kingsley05采纳,获得10
24秒前
25秒前
Pittes发布了新的文献求助10
25秒前
wddsf完成签到,获得积分10
26秒前
睡觉睡觉发布了新的文献求助10
30秒前
思源应助清逸之风采纳,获得50
30秒前
打打应助T_MC郭采纳,获得10
30秒前
30秒前
31秒前
34秒前
卡恩完成签到 ,获得积分10
34秒前
小马甲应助自信不愁采纳,获得10
35秒前
生动若之发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999331
求助须知:如何正确求助?哪些是违规求助? 3538658
关于积分的说明 11274856
捐赠科研通 3277581
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101