Multiple attention channels aggregated network for multimodal medical image fusion

计算机科学 人工智能 模式识别(心理学) 模态(人机交互) 特征(语言学) 医学影像学 块(置换群论) 融合规则 融合 模式 高光谱成像 图像融合 图像(数学) 数学 社会科学 哲学 语言学 几何学 社会学
作者
Jingxue Huang,Tianshu Tan,Xiaosong Li,Tao Ye,Yanxiong Wu
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17607
摘要

Abstract Background In clinical practices, doctors usually need to synthesize several single‐modality medical images for diagnosis, which is a time‐consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion. Purpose Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes. This oversight can lead to diminished fusion performance. To bridge the gaps, we introduce a novel approach that emphasizes the integration of multiscale features through a structured decomposition and attention interaction. Methods Our method first decomposes the source images into three distinct groups of multiscale features by stacking different numbers of diverse branch blocks. Then, to extract global and local information separately for each group of features, we designed the convolutional and Transformer block attention branch. These two attention branches make full use of channel and spatial attention mechanisms and achieve attention interaction, enabling the corresponding feature channels to fully capture local and global information and achieve effective inter‐block feature aggregation. Results For the MRI‐PET fusion type, MACAN achieves average improvements of 24.48%, 27.65%, 19.24%, 27.32%, 18.51%, and 10.33% over the compared methods in terms of Q cb , AG, SSIM, SF, Q abf , and VIF metrics, respectively. Similarly, for the MRI‐SPECT fusion type, MACAN outperforms the compared methods with average improvements of 29.13%, 26.43%, 18.20%, 27.71%, 16.79%, and 10.38% in the same metrics. In addition, our method demonstrates promising results in segmentation experiments. Specifically, for the T2‐T1ce fusion, it achieves a Dice coefficient of 0.60 and a Hausdorff distance of 15.15. Comparable performance is observed for the Flair‐T1ce fusion, with a Dice coefficient of 0.60 and a Hausdorff distance of 13.27. Conclusion The proposed multiple attention channels aggregated network (MACAN) can effectively retain the complementary information from source images. The evaluation of MACAN through medical image fusion and segmentation experiments on public datasets demonstrated its superiority over the state‐of‐the‐art methods, both in terms of visual quality and objective metrics. Our code is available at https://github.com/JasonWong30/MACAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
南巷发布了新的文献求助10
2秒前
ccccc发布了新的文献求助10
2秒前
2秒前
3秒前
stacy完成签到 ,获得积分10
4秒前
4秒前
5秒前
千跃应助科研通管家采纳,获得20
5秒前
yookia应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
yookia应助科研通管家采纳,获得10
5秒前
无私的芹应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
圆锥香蕉应助HJJHJH采纳,获得20
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
萧水白应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
小璐璐呀发布了新的文献求助10
8秒前
8秒前
魔幻灯泡完成签到,获得积分10
8秒前
默默毛豆完成签到,获得积分10
9秒前
9秒前
11秒前
奇怪的柒发布了新的文献求助10
11秒前
深情安青应助在蒸的白面采纳,获得10
12秒前
天天快乐应助花开富贵采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931