亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple attention channels aggregated network for multimodal medical image fusion

计算机科学 人工智能 模式识别(心理学) 模态(人机交互) 特征(语言学) 医学影像学 块(置换群论) 融合规则 融合 模式 高光谱成像 图像融合 图像(数学) 数学 哲学 社会学 语言学 社会科学 几何学
作者
Jingxue Huang,Tianshu Tan,Xiaosong Li,Tao Ye,Yanxiong Wu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (4): 2356-2374 被引量:3
标识
DOI:10.1002/mp.17607
摘要

Abstract Background In clinical practices, doctors usually need to synthesize several single‐modality medical images for diagnosis, which is a time‐consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion. Purpose Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes. This oversight can lead to diminished fusion performance. To bridge the gaps, we introduce a novel approach that emphasizes the integration of multiscale features through a structured decomposition and attention interaction. Methods Our method first decomposes the source images into three distinct groups of multiscale features by stacking different numbers of diverse branch blocks. Then, to extract global and local information separately for each group of features, we designed the convolutional and Transformer block attention branch. These two attention branches make full use of channel and spatial attention mechanisms and achieve attention interaction, enabling the corresponding feature channels to fully capture local and global information and achieve effective inter‐block feature aggregation. Results For the MRI‐PET fusion type, MACAN achieves average improvements of 24.48%, 27.65%, 19.24%, 27.32%, 18.51%, and 10.33% over the compared methods in terms of Q cb , AG, SSIM, SF, Q abf , and VIF metrics, respectively. Similarly, for the MRI‐SPECT fusion type, MACAN outperforms the compared methods with average improvements of 29.13%, 26.43%, 18.20%, 27.71%, 16.79%, and 10.38% in the same metrics. In addition, our method demonstrates promising results in segmentation experiments. Specifically, for the T2‐T1ce fusion, it achieves a Dice coefficient of 0.60 and a Hausdorff distance of 15.15. Comparable performance is observed for the Flair‐T1ce fusion, with a Dice coefficient of 0.60 and a Hausdorff distance of 13.27. Conclusion The proposed multiple attention channels aggregated network (MACAN) can effectively retain the complementary information from source images. The evaluation of MACAN through medical image fusion and segmentation experiments on public datasets demonstrated its superiority over the state‐of‐the‐art methods, both in terms of visual quality and objective metrics. Our code is available at https://github.com/JasonWong30/MACAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SimonShaw完成签到,获得积分10
4秒前
犬来八荒发布了新的文献求助10
4秒前
Akim应助犬来八荒采纳,获得20
20秒前
22秒前
明芬发布了新的文献求助10
27秒前
tgytgy完成签到,获得积分10
34秒前
ceeray23发布了新的文献求助20
57秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
您疼肚发布了新的文献求助10
1分钟前
Decheng_xiao完成签到 ,获得积分10
2分钟前
GIA完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
生动丸子完成签到 ,获得积分10
3分钟前
桐桐应助谭代涛采纳,获得10
3分钟前
所所应助满意的世界采纳,获得300
3分钟前
3分钟前
谭代涛发布了新的文献求助10
3分钟前
4分钟前
Alvin完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
科研通AI6应助明芬采纳,获得10
5分钟前
5分钟前
5分钟前
2023发布了新的文献求助10
5分钟前
2023完成签到,获得积分10
6分钟前
6分钟前
明理太君发布了新的文献求助10
6分钟前
明理太君完成签到,获得积分20
6分钟前
汉堡包应助明理太君采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685557
关于积分的说明 14838607
捐赠科研通 4671521
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945