Multiple attention channels aggregated network for multimodal medical image fusion

计算机科学 人工智能 模式识别(心理学) 模态(人机交互) 特征(语言学) 医学影像学 块(置换群论) 融合规则 融合 模式 高光谱成像 图像融合 图像(数学) 数学 社会科学 哲学 语言学 几何学 社会学
作者
Jingxue Huang,Tianshu Tan,Xiaosong Li,Tao Ye,Yanxiong Wu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17607
摘要

Abstract Background In clinical practices, doctors usually need to synthesize several single‐modality medical images for diagnosis, which is a time‐consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion. Purpose Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes. This oversight can lead to diminished fusion performance. To bridge the gaps, we introduce a novel approach that emphasizes the integration of multiscale features through a structured decomposition and attention interaction. Methods Our method first decomposes the source images into three distinct groups of multiscale features by stacking different numbers of diverse branch blocks. Then, to extract global and local information separately for each group of features, we designed the convolutional and Transformer block attention branch. These two attention branches make full use of channel and spatial attention mechanisms and achieve attention interaction, enabling the corresponding feature channels to fully capture local and global information and achieve effective inter‐block feature aggregation. Results For the MRI‐PET fusion type, MACAN achieves average improvements of 24.48%, 27.65%, 19.24%, 27.32%, 18.51%, and 10.33% over the compared methods in terms of Q cb , AG, SSIM, SF, Q abf , and VIF metrics, respectively. Similarly, for the MRI‐SPECT fusion type, MACAN outperforms the compared methods with average improvements of 29.13%, 26.43%, 18.20%, 27.71%, 16.79%, and 10.38% in the same metrics. In addition, our method demonstrates promising results in segmentation experiments. Specifically, for the T2‐T1ce fusion, it achieves a Dice coefficient of 0.60 and a Hausdorff distance of 15.15. Comparable performance is observed for the Flair‐T1ce fusion, with a Dice coefficient of 0.60 and a Hausdorff distance of 13.27. Conclusion The proposed multiple attention channels aggregated network (MACAN) can effectively retain the complementary information from source images. The evaluation of MACAN through medical image fusion and segmentation experiments on public datasets demonstrated its superiority over the state‐of‐the‐art methods, both in terms of visual quality and objective metrics. Our code is available at https://github.com/JasonWong30/MACAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助Alexander采纳,获得10
2秒前
3秒前
3秒前
长期发布了新的文献求助10
4秒前
SYLH应助liam采纳,获得30
4秒前
豆壳儿完成签到 ,获得积分10
4秒前
HHHHHH完成签到,获得积分10
4秒前
5秒前
lalala发布了新的文献求助10
5秒前
隐形曼青应助山石采纳,获得10
6秒前
安an完成签到,获得积分10
6秒前
又夏完成签到,获得积分10
6秒前
宋小兔应助小包子采纳,获得10
7秒前
7秒前
ShellyHan发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
小蘑菇应助msy采纳,获得10
10秒前
共享精神应助CIOOICO1采纳,获得10
11秒前
12秒前
MM完成签到,获得积分10
12秒前
13秒前
认真的雪发布了新的文献求助10
13秒前
酷波er应助伶俐的书白采纳,获得10
14秒前
14秒前
祖国大西北完成签到,获得积分10
14秒前
沙漠水发布了新的文献求助10
14秒前
15秒前
16秒前
蒺藜发布了新的文献求助10
16秒前
18秒前
山石发布了新的文献求助10
18秒前
天真的香寒完成签到 ,获得积分10
18秒前
黄思雨发布了新的文献求助10
19秒前
橡树果应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110