亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple attention channels aggregated network for multimodal medical image fusion

计算机科学 人工智能 模式识别(心理学) 模态(人机交互) 特征(语言学) 医学影像学 块(置换群论) 融合规则 融合 模式 高光谱成像 图像融合 图像(数学) 数学 社会科学 哲学 语言学 几何学 社会学
作者
Jingxue Huang,Tianshu Tan,Xiaosong Li,Tao Ye,Yanxiong Wu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17607
摘要

Abstract Background In clinical practices, doctors usually need to synthesize several single‐modality medical images for diagnosis, which is a time‐consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion. Purpose Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes. This oversight can lead to diminished fusion performance. To bridge the gaps, we introduce a novel approach that emphasizes the integration of multiscale features through a structured decomposition and attention interaction. Methods Our method first decomposes the source images into three distinct groups of multiscale features by stacking different numbers of diverse branch blocks. Then, to extract global and local information separately for each group of features, we designed the convolutional and Transformer block attention branch. These two attention branches make full use of channel and spatial attention mechanisms and achieve attention interaction, enabling the corresponding feature channels to fully capture local and global information and achieve effective inter‐block feature aggregation. Results For the MRI‐PET fusion type, MACAN achieves average improvements of 24.48%, 27.65%, 19.24%, 27.32%, 18.51%, and 10.33% over the compared methods in terms of Q cb , AG, SSIM, SF, Q abf , and VIF metrics, respectively. Similarly, for the MRI‐SPECT fusion type, MACAN outperforms the compared methods with average improvements of 29.13%, 26.43%, 18.20%, 27.71%, 16.79%, and 10.38% in the same metrics. In addition, our method demonstrates promising results in segmentation experiments. Specifically, for the T2‐T1ce fusion, it achieves a Dice coefficient of 0.60 and a Hausdorff distance of 15.15. Comparable performance is observed for the Flair‐T1ce fusion, with a Dice coefficient of 0.60 and a Hausdorff distance of 13.27. Conclusion The proposed multiple attention channels aggregated network (MACAN) can effectively retain the complementary information from source images. The evaluation of MACAN through medical image fusion and segmentation experiments on public datasets demonstrated its superiority over the state‐of‐the‐art methods, both in terms of visual quality and objective metrics. Our code is available at https://github.com/JasonWong30/MACAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛ya发布了新的文献求助10
1秒前
19秒前
32秒前
贾斯汀铁柱完成签到,获得积分10
51秒前
1分钟前
廖芳芳发布了新的文献求助30
1分钟前
1分钟前
1分钟前
镜子发布了新的文献求助10
1分钟前
追求者发布了新的文献求助10
1分钟前
physicalproblem应助追求者采纳,获得10
2分钟前
2分钟前
EED完成签到 ,获得积分10
2分钟前
镜子完成签到 ,获得积分20
2分钟前
清净163完成签到,获得积分10
2分钟前
林思完成签到,获得积分10
2分钟前
星辰大海应助qiuxuan100采纳,获得10
2分钟前
CodeCraft应助镜子采纳,获得10
2分钟前
bji完成签到,获得积分10
2分钟前
清净126完成签到 ,获得积分10
2分钟前
adcc102完成签到,获得积分10
3分钟前
4分钟前
qiuxuan100发布了新的文献求助10
4分钟前
4分钟前
天天快乐应助科研那些年采纳,获得10
4分钟前
4分钟前
4分钟前
兆兆完成签到 ,获得积分10
4分钟前
Hedy应助科研那些年采纳,获得10
4分钟前
万能图书馆应助chaoswu采纳,获得10
4分钟前
养一只鱼完成签到 ,获得积分10
4分钟前
4分钟前
chaoswu发布了新的文献求助10
5分钟前
5分钟前
涛ya完成签到,获得积分10
5分钟前
Jenny完成签到,获得积分10
5分钟前
Lily完成签到 ,获得积分10
5分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
研友_nVWP2Z完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482518
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425942
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005