Momentum Contrastive Teacher for Semi-Supervised Skeleton Action Recognition

骨架(计算机编程) 动作识别 人工智能 计算机科学 模式识别(心理学) 计算机视觉 自然语言处理 动作(物理) 语音识别 班级(哲学) 物理 量子力学 程序设计语言
作者
Mingqi Lu,Xiaobo Lu,Jun Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3522818
摘要

In the field of semi-supervised skeleton action recognition, existing work primarily follows the paradigm of self-supervised training followed by supervised fine-tuning. However, self-supervised learning focuses on exploring data representation rather than label classification. Inspired by Mean Teacher, we explore a novel pseudo-label-based model called SkeleMoCLR. Specifically, we use MoCo v2 as the foundation and extend it into a teacher-student network through a momentum encoder. The generation of high-confidence pseudo-labels requires a well-pretrained model as a prerequisite. In cases where large-scale skeleton data is lacking, we propose leveraging contrastive learning to transfer discriminative action features from large vision-text models to the skeleton encoder. Following the contrastive pre-training, the key encoder branch from MoCo v2 serves as the teacher to generate pseudo-labels for training the query encoder branch. Furthermore, we introduce pseudo-labels into the memory queues, sampling negative samples from different pseudo-label classes to maximize the representation differentiation between different categories. We jointly optimize the classification loss for both labeled and pseudo-labeled data and the contrastive loss for unlabeled data to update model parameters, fully harnessing the potential of pseudo-label semi-supervised learning and self-supervised learning. Extensive experiments conducted on the NTU-60, NTU-120, PKU-MMD, and NW-UCLA datasets demonstrate that our SkeleMoCLR outperforms existing competitive methods in the semi-supervised skeleton action recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaka发布了新的文献求助50
刚刚
搬运工完成签到,获得积分10
刚刚
1秒前
啸锋完成签到 ,获得积分10
1秒前
Hana发布了新的文献求助10
1秒前
1秒前
Asnirelia完成签到,获得积分20
1秒前
1秒前
搬运工发布了新的文献求助10
2秒前
汉堡包应助zyd采纳,获得10
3秒前
苏州河发布了新的文献求助10
3秒前
4秒前
丢丢银发布了新的文献求助10
5秒前
缥缈绿海关注了科研通微信公众号
5秒前
6秒前
WWW发布了新的文献求助10
7秒前
7秒前
7秒前
木木圆发布了新的文献求助10
9秒前
科研通AI5应助2861542517采纳,获得10
9秒前
9秒前
boan发布了新的文献求助10
9秒前
HappyDog完成签到,获得积分10
11秒前
立军发布了新的文献求助10
13秒前
搜集达人应助完美的盼芙采纳,获得30
13秒前
14秒前
15秒前
帅逼发布了新的文献求助10
15秒前
15秒前
15秒前
18秒前
18秒前
Asnirelia发布了新的文献求助30
19秒前
缥缈绿海发布了新的文献求助10
19秒前
ybmdyr发布了新的文献求助10
20秒前
21秒前
22秒前
搜集达人应助苏州河采纳,获得10
22秒前
在水一方应助pei采纳,获得10
22秒前
梓然发布了新的文献求助10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880