Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 外科 眼睑
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
顾矜应助Ddz采纳,获得10
1秒前
李娇完成签到 ,获得积分10
1秒前
Jasper应助小饼干二采纳,获得10
1秒前
3秒前
安静啤酒完成签到,获得积分10
4秒前
5秒前
科研通AI6应助FFFFFF采纳,获得10
5秒前
edtaa发布了新的文献求助10
6秒前
小陶子完成签到,获得积分10
7秒前
10秒前
SciGPT应助徐风年采纳,获得10
11秒前
hky完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
俊俏的紫菜应助木头桌子采纳,获得40
14秒前
正直夜安发布了新的文献求助10
15秒前
白羽丫完成签到,获得积分10
17秒前
18秒前
小李完成签到,获得积分20
18秒前
Ddz发布了新的文献求助10
20秒前
我爱学习完成签到 ,获得积分10
20秒前
沉默襄发布了新的文献求助10
21秒前
FashionBoy应助小米采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
冷酷夏真完成签到 ,获得积分10
24秒前
务实的如冬完成签到 ,获得积分10
25秒前
27秒前
28秒前
28秒前
29秒前
29秒前
29秒前
senli2018发布了新的文献求助10
29秒前
666发布了新的文献求助10
31秒前
31秒前
32秒前
香蕉八宝粥完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385