Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 眼睑 外科
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助李JJ采纳,获得10
1秒前
茶茶发布了新的文献求助10
1秒前
1秒前
2秒前
称心问枫发布了新的文献求助10
2秒前
不说完成签到,获得积分10
3秒前
浮游应助lujianqi采纳,获得10
4秒前
Lim1819完成签到 ,获得积分10
4秒前
夕荀发布了新的文献求助10
5秒前
香蕉觅云应助义气尔芙采纳,获得10
6秒前
坚强的安柏完成签到,获得积分10
9秒前
season完成签到,获得积分10
9秒前
懒123发布了新的文献求助10
9秒前
10秒前
香蕉觅云应助顺顺顺采纳,获得10
11秒前
11秒前
今后应助舒心新儿采纳,获得10
12秒前
12秒前
英姑应助御白采纳,获得10
13秒前
CC完成签到,获得积分10
14秒前
桐夜完成签到 ,获得积分10
14秒前
善学以致用应助口袋小镇采纳,获得10
14秒前
15秒前
CC发布了新的文献求助10
18秒前
浪子发布了新的文献求助10
18秒前
louiselong发布了新的文献求助10
18秒前
baobao完成签到,获得积分10
20秒前
21秒前
21秒前
高磊一航完成签到,获得积分10
22秒前
故槿完成签到 ,获得积分10
22秒前
传奇3应助小白采纳,获得10
23秒前
伶俐皮卡丘完成签到,获得积分10
25秒前
李麟发布了新的文献求助10
26秒前
27秒前
吴彦祖发布了新的文献求助10
27秒前
29秒前
louiselong完成签到,获得积分10
30秒前
31秒前
哈基米德应助加缪采纳,获得50
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207263
求助须知:如何正确求助?哪些是违规求助? 4385281
关于积分的说明 13656356
捐赠科研通 4243841
什么是DOI,文献DOI怎么找? 2328389
邀请新用户注册赠送积分活动 1326091
关于科研通互助平台的介绍 1278303