Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 外科 眼睑
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyuhng+1完成签到 ,获得积分10
刚刚
无极微光应助henry采纳,获得20
1秒前
勤恳的德地完成签到,获得积分10
1秒前
凯瑞发布了新的文献求助10
2秒前
优雅灵波发布了新的文献求助10
3秒前
3秒前
3秒前
666完成签到,获得积分10
4秒前
江伊完成签到,获得积分10
4秒前
追寻梦松完成签到,获得积分10
6秒前
甜甜的平文完成签到 ,获得积分10
8秒前
大树完成签到 ,获得积分10
8秒前
Aurora发布了新的文献求助10
9秒前
无极微光应助江伊采纳,获得20
9秒前
9秒前
ye发布了新的文献求助20
10秒前
ayumi完成签到,获得积分10
11秒前
完美世界应助健壮的映之采纳,获得10
11秒前
11发布了新的文献求助10
13秒前
心理可达鸭完成签到,获得积分10
13秒前
14秒前
9464完成签到 ,获得积分10
14秒前
穆子涵完成签到,获得积分10
15秒前
我是小张完成签到 ,获得积分10
15秒前
15秒前
LHP完成签到,获得积分10
18秒前
务实曼冬完成签到 ,获得积分10
18秒前
孤独的狼发布了新的文献求助10
20秒前
SONG发布了新的文献求助10
20秒前
潘果果完成签到,获得积分10
21秒前
21秒前
Ava应助优雅灵波采纳,获得10
22秒前
Aurora完成签到,获得积分10
24秒前
24秒前
咩咩完成签到,获得积分10
25秒前
称心凡发布了新的文献求助10
25秒前
英姑应助孤独的狼采纳,获得10
27秒前
刻苦大门发布了新的文献求助10
27秒前
30秒前
科研通AI6应助凯瑞采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600729
求助须知:如何正确求助?哪些是违规求助? 4686290
关于积分的说明 14842868
捐赠科研通 4677642
什么是DOI,文献DOI怎么找? 2538917
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471229