亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 外科 眼睑
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助qq采纳,获得10
14秒前
26秒前
1分钟前
1分钟前
xun完成签到,获得积分10
1分钟前
1分钟前
wangyf完成签到,获得积分10
1分钟前
qq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
星沐易发布了新的文献求助10
2分钟前
xianianrui发布了新的文献求助10
2分钟前
2分钟前
千枼发布了新的文献求助10
2分钟前
2分钟前
xianianrui发布了新的文献求助10
2分钟前
心随以动完成签到 ,获得积分10
2分钟前
修辛完成签到 ,获得积分10
2分钟前
千枼完成签到,获得积分10
3分钟前
JamesPei应助sy采纳,获得10
3分钟前
3分钟前
superming发布了新的文献求助10
3分钟前
3分钟前
3分钟前
能干宛秋完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
sy发布了新的文献求助10
3分钟前
Allright发布了新的文献求助10
3分钟前
共享精神应助Allright采纳,获得10
3分钟前
4分钟前
ccm应助星沐易采纳,获得10
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
yang完成签到,获得积分10
5分钟前
5分钟前
星沐易发布了新的文献求助10
5分钟前
xianianrui发布了新的文献求助10
5分钟前
火星完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540919
求助须知:如何正确求助?哪些是违规求助? 3974664
关于积分的说明 12310757
捐赠科研通 3641887
什么是DOI,文献DOI怎么找? 2005489
邀请新用户注册赠送积分活动 1040881
科研通“疑难数据库(出版商)”最低求助积分说明 930110