Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 外科 眼睑
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕课魔芋发布了新的文献求助10
1秒前
1秒前
张一一完成签到,获得积分10
2秒前
思源应助xiaoju采纳,获得10
2秒前
3秒前
典雅的人生应助keyun采纳,获得10
3秒前
3秒前
荷塘月色应助姜先生采纳,获得10
3秒前
Owen应助自由的元冬采纳,获得10
4秒前
小蘑菇应助abc采纳,获得10
4秒前
陳嘻嘻完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
哇哇哇发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
李丙首完成签到,获得积分10
9秒前
曹毅凯完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
9秒前
piukor应助banabanama采纳,获得10
10秒前
QKOOKIE发布了新的文献求助10
10秒前
仲颖发布了新的文献求助10
10秒前
11秒前
11秒前
FashionBoy应助kkpzc采纳,获得10
11秒前
隐形曼青应助受伤自行车采纳,获得10
11秒前
会飞的鱼发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
悦耳难摧发布了新的文献求助10
13秒前
13秒前
Lucas应助ar采纳,获得10
13秒前
打打应助满意的幻竹采纳,获得10
15秒前
小李应助cece采纳,获得10
15秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191