Strip and boundary detection multi‐task learning network for segmentation of meibomian glands

睑板腺 分割 计算机科学 人工智能 边界(拓扑) 模式识别(心理学) 图像分割 计算机视觉 数学 医学 数学分析 眼睑 外科
作者
Weifang Zhu,Dengfeng Liu,Xinyu Zhuang,Tian Gong,Fei Shi,Dehui Xiang,Tao Peng,Shouxin Zhang,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17542
摘要

Abstract Background Automatic segmentation of meibomian glands in near‐infrared meibography images is basis of morphological parameter analysis, which plays a crucial role in facilitating the diagnosis of meibomian gland dysfunction (MGD). The special strip shape and the adhesion between glands make the automatic segmentation of meibomian glands very challenging. Purpose A strip and boundary detection multi‐task learning network (SBD‐MTLNet) based on encoder‐decoder structure is proposed to realize the automatic segmentation of meibomian glands. Methods A strip mixed attention module (SMAM) is proposed to enhance the network's ability to recognize the strip shape of glands. To alleviate the problem of adhesion between glands, a boundary detection auxiliary network (BDA‐Net) is proposed, which introduces boundary features to assist gland segmentation. A self‐adaptive interactive information fusion module (SIIFM) based on reverse attention mechanism is proposed to realize information complementation between meibomian gland segmentation and boundary detection tasks. The proposed SBD‐MTLNet has been evaluated on an in‐house dataset (453 images) and a public dataset MGD‐1K (1000 images). Due to the limited number of images, a five‐fold cross validation strategy is adopted. Results Average dice coefficient of the proposed SBD‐MTLNet reaches 81.08% and 84.32% on the in‐house dataset and the public one, respectively. Comprehensive experimental results demonstrate the effectiveness the proposed SBD‐MTLNet, outperforming other state‐of‐the‐art methods. Conclusions The proposed SBD‐MTLNet can focus more on the shape characteristics of the meibomian glands and the boundary contour information between the adjacent glands via multi‐task learning strategy. The segmentation results of the proposed method can be used for the quantitative morphological characteristics analysis of meibomian glands, which has potential for the auxiliary diagnosis of MGD in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫子骞发布了新的文献求助10
1秒前
1秒前
1秒前
Jewel发布了新的文献求助20
1秒前
1秒前
Ava应助美好斓采纳,获得10
2秒前
2秒前
3秒前
5秒前
bin完成签到,获得积分10
6秒前
12138的9527发布了新的文献求助10
6秒前
白_发布了新的文献求助30
6秒前
FFFFcom发布了新的文献求助10
7秒前
GGbond发布了新的文献求助10
7秒前
我服有点黑完成签到,获得积分10
8秒前
整齐荟发布了新的文献求助10
8秒前
8秒前
斯文无敌完成签到,获得积分10
9秒前
123456完成签到,获得积分10
10秒前
高兴紫寒发布了新的文献求助10
11秒前
11秒前
贪玩菲音完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助150
12秒前
今后应助研友_Z1xNWn采纳,获得10
12秒前
桐桐应助豆子采纳,获得10
13秒前
hrq完成签到,获得积分10
13秒前
欣慰曼彤完成签到,获得积分10
13秒前
zyfwj完成签到,获得积分10
13秒前
13秒前
13秒前
顾矜应助斯文明杰采纳,获得10
14秒前
火星上的宫苴完成签到 ,获得积分10
15秒前
15秒前
Wirepuller完成签到,获得积分20
16秒前
高兴紫寒完成签到,获得积分10
17秒前
整齐荟完成签到,获得积分10
18秒前
yar应助cz采纳,获得10
18秒前
18秒前
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209