PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
刚刚
自由安柏应助刻苦的源智采纳,获得10
刚刚
笑点低怀亦完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
一个达不刘完成签到,获得积分20
1秒前
3秒前
CipherSage应助天外来客采纳,获得10
3秒前
小菡菡发布了新的文献求助10
4秒前
5秒前
玉米发布了新的文献求助10
6秒前
6秒前
6秒前
所所应助Phi.Wang采纳,获得10
7秒前
7秒前
Epiphany完成签到,获得积分10
8秒前
可靠往事发布了新的文献求助10
8秒前
无小盐发布了新的文献求助10
9秒前
yy发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
汉堡包应助土豆淀粉采纳,获得10
10秒前
猩心发布了新的文献求助10
10秒前
小二郎应助研友_8QxN1Z采纳,获得10
11秒前
酷波er应助山东及时雨采纳,获得10
11秒前
12秒前
sui发布了新的文献求助30
12秒前
12秒前
可靠往事完成签到,获得积分10
15秒前
如意的尔蝶完成签到,获得积分10
15秒前
阿欢发布了新的文献求助10
15秒前
15秒前
enchanted完成签到 ,获得积分10
15秒前
天外来客发布了新的文献求助10
16秒前
耿耿完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
科研通AI5应助yetong采纳,获得10
19秒前
科研通AI2S应助纯真的人英采纳,获得10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665610
求助须知:如何正确求助?哪些是违规求助? 3224905
关于积分的说明 9760388
捐赠科研通 2934899
什么是DOI,文献DOI怎么找? 1607211
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101