PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助遥感小虫采纳,获得10
1秒前
1秒前
2秒前
hxb发布了新的文献求助10
2秒前
迷路的清涟完成签到,获得积分10
3秒前
小学生1005完成签到,获得积分10
6秒前
wty发布了新的文献求助10
6秒前
卜念发布了新的文献求助30
7秒前
单眼皮大女孩完成签到,获得积分10
7秒前
CLMY完成签到,获得积分10
8秒前
11秒前
12秒前
12秒前
12秒前
遥感小虫发布了新的文献求助10
15秒前
15秒前
16秒前
fly完成签到,获得积分10
17秒前
shaiga13发布了新的文献求助10
17秒前
oceanao应助Sonny采纳,获得10
18秒前
郝宝真发布了新的文献求助10
19秒前
xiao发布了新的文献求助50
19秒前
21秒前
管理想完成签到,获得积分10
22秒前
NexusExplorer应助卜念采纳,获得10
23秒前
小鹿完成签到,获得积分10
25秒前
科研通AI2S应助王提采纳,获得30
25秒前
马紫蓝发布了新的文献求助10
27秒前
Niuma发布了新的文献求助10
29秒前
29秒前
心海发布了新的文献求助10
31秒前
爱静静应助haowu采纳,获得10
32秒前
科研通AI2S应助haowu采纳,获得10
33秒前
田様应助haowu采纳,获得10
33秒前
科研通AI2S应助haowu采纳,获得10
33秒前
充电宝应助haowu采纳,获得10
33秒前
上官若男应助haowu采纳,获得10
33秒前
华仔应助小熊采纳,获得10
34秒前
Harry应助科研通管家采纳,获得20
36秒前
Harry应助科研通管家采纳,获得20
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187