PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助wuqs采纳,获得10
2秒前
111完成签到 ,获得积分10
2秒前
机智的青柏完成签到 ,获得积分10
3秒前
桐桐应助Jim luo采纳,获得10
3秒前
BB完成签到,获得积分20
4秒前
坚强的缘分完成签到,获得积分10
5秒前
浮游应助wjw采纳,获得10
6秒前
浮游应助wjw采纳,获得10
6秒前
浮游应助wjw采纳,获得10
6秒前
Lee完成签到,获得积分10
7秒前
纯真的醉柳完成签到,获得积分10
7秒前
十五完成签到,获得积分10
9秒前
李燕伟完成签到 ,获得积分10
9秒前
10秒前
苏以禾完成签到 ,获得积分10
12秒前
12秒前
冷冷完成签到 ,获得积分10
13秒前
怀南完成签到 ,获得积分10
14秒前
Jim luo发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
wjw完成签到,获得积分10
18秒前
乌云乌云快走开完成签到,获得积分10
19秒前
1111chen完成签到 ,获得积分10
19秒前
蓝韵完成签到,获得积分10
20秒前
matt完成签到,获得积分10
21秒前
舒克完成签到,获得积分10
23秒前
23秒前
Jim luo完成签到,获得积分10
23秒前
25秒前
高大以南完成签到,获得积分10
25秒前
hbj完成签到,获得积分10
25秒前
丽丽完成签到 ,获得积分10
28秒前
忧郁的猪鼻子完成签到 ,获得积分10
28秒前
明亮谷波发布了新的文献求助10
29秒前
qiqi完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
小杭76完成签到,获得积分0
33秒前
34秒前
家雁菱完成签到,获得积分10
34秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590