亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助mogekkko采纳,获得10
刚刚
斯通纳完成签到 ,获得积分10
4秒前
搜集达人应助李洛华哥采纳,获得10
6秒前
苹果王子6699完成签到 ,获得积分10
7秒前
CipherSage应助宁不正采纳,获得10
10秒前
若宫伊芙应助兜兜采纳,获得10
13秒前
烟花应助mogekkko采纳,获得10
15秒前
16秒前
nazhang发布了新的文献求助10
20秒前
21秒前
赵一谋发布了新的文献求助10
23秒前
25秒前
25秒前
852应助科研通管家采纳,获得10
25秒前
落寞依珊完成签到,获得积分10
25秒前
wzy完成签到,获得积分10
27秒前
mogekkko发布了新的文献求助10
28秒前
青柚完成签到 ,获得积分10
28秒前
田様应助殷楷霖采纳,获得10
30秒前
bkagyin应助wing00024采纳,获得10
33秒前
大个应助跳跃的小之采纳,获得10
36秒前
mogekkko发布了新的文献求助10
42秒前
天天快乐应助MJH123456采纳,获得10
47秒前
47秒前
stresm完成签到,获得积分10
48秒前
小星星完成签到 ,获得积分10
48秒前
49秒前
跳跃的小之完成签到,获得积分20
50秒前
wzy发布了新的文献求助10
51秒前
53秒前
54秒前
幸运幸福发布了新的文献求助10
57秒前
mogekkko发布了新的文献求助10
58秒前
西湖醋鱼完成签到,获得积分10
1分钟前
幸运幸福完成签到,获得积分10
1分钟前
NexusExplorer应助nazhang采纳,获得10
1分钟前
浔初先生完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790