PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助可靠的夜雪采纳,获得10
1秒前
华仔应助lei采纳,获得10
1秒前
Alex完成签到,获得积分10
1秒前
2秒前
所所应助闪闪雁采纳,获得10
2秒前
2秒前
刺1656完成签到,获得积分10
3秒前
3秒前
所所应助优秀真采纳,获得10
3秒前
迟迟发布了新的文献求助10
3秒前
NexusExplorer应助Azheng采纳,获得10
4秒前
sxpab发布了新的文献求助10
4秒前
凌发发布了新的文献求助10
4秒前
4秒前
就这发布了新的文献求助10
4秒前
lee完成签到,获得积分10
5秒前
5秒前
zbs发布了新的文献求助10
5秒前
5秒前
852应助北越城主采纳,获得30
5秒前
小不遛w完成签到,获得积分10
6秒前
organicboy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
xinyu完成签到,获得积分10
7秒前
干嘛完成签到 ,获得积分20
8秒前
超越一切完成签到,获得积分10
8秒前
8秒前
8秒前
无花果应助东北采纳,获得10
8秒前
9秒前
巴旦木发布了新的文献求助10
9秒前
静仰星空完成签到,获得积分10
10秒前
10秒前
田様应助小景毕业采纳,获得10
10秒前
浮游应助科研通管家采纳,获得30
10秒前
wxnice发布了新的文献求助10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
优美紫槐应助科研通管家采纳,获得10
10秒前
lxp完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297