亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助辰昜采纳,获得10
9秒前
22秒前
28秒前
fyy完成签到 ,获得积分10
45秒前
1分钟前
1分钟前
辰昜发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
张露发布了新的文献求助10
1分钟前
1分钟前
顾矜应助张露采纳,获得10
1分钟前
英俊的铭应助Demi_Ming采纳,获得10
2分钟前
情怀应助dududu采纳,获得10
2分钟前
2分钟前
dududu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Orange应助落后的怀柔采纳,获得10
2分钟前
淡定成风完成签到,获得积分10
3分钟前
3分钟前
结实智宸完成签到,获得积分10
3分钟前
我是老大应助2hi采纳,获得10
3分钟前
yipmyonphu完成签到,获得积分10
3分钟前
3分钟前
活泼菠萝发布了新的文献求助10
3分钟前
你看起来很好吃完成签到,获得积分10
3分钟前
活泼菠萝完成签到,获得积分10
3分钟前
Demi_Ming发布了新的文献求助10
3分钟前
4分钟前
4分钟前
Chonger发布了新的文献求助10
4分钟前
2hi发布了新的文献求助10
4分钟前
英姑应助酷炫的不二采纳,获得10
4分钟前
领导范儿应助Chonger采纳,获得10
4分钟前
GingerF应助科研通管家采纳,获得150
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900708
求助须知:如何正确求助?哪些是违规求助? 4180475
关于积分的说明 12976895
捐赠科研通 3945237
什么是DOI,文献DOI怎么找? 2164010
邀请新用户注册赠送积分活动 1182284
关于科研通互助平台的介绍 1088508