PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风铃夜雨完成签到 ,获得积分10
刚刚
刚刚
刚刚
闪闪的梦槐完成签到 ,获得积分10
1秒前
mirror发布了新的文献求助10
1秒前
ma发布了新的文献求助10
3秒前
胡图图发布了新的文献求助10
4秒前
bow完成签到 ,获得积分10
6秒前
taylorcurry发布了新的文献求助10
6秒前
孤岛完成签到,获得积分10
6秒前
7秒前
科研同人完成签到 ,获得积分10
7秒前
852应助章鱼哥采纳,获得10
8秒前
sinan完成签到,获得积分10
9秒前
无名之夫完成签到 ,获得积分10
9秒前
ZJHYNL发布了新的文献求助10
10秒前
喵喵发布了新的文献求助10
11秒前
taylorcurry完成签到,获得积分10
12秒前
12秒前
学术喳喳关注了科研通微信公众号
14秒前
14秒前
han完成签到,获得积分20
14秒前
14秒前
16秒前
τ涛完成签到,获得积分10
17秒前
dakui发布了新的文献求助10
17秒前
17秒前
Yongguang完成签到,获得积分20
17秒前
long发布了新的文献求助10
18秒前
境屾完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
dd发布了新的文献求助10
22秒前
CHUNQ完成签到,获得积分10
23秒前
彭于晏应助桃月二九采纳,获得10
23秒前
26秒前
26秒前
sunianjinshi完成签到,获得积分10
27秒前
kin完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896