Activity-Based Person Identification Using Multimodal Wearable Sensor Data

计算机科学 活动识别 可穿戴计算机 智能手表 加速度计 人工智能 可穿戴技术 鉴定(生物学) 机器学习 传感器融合 陀螺仪 特征提取 模式识别(心理学) 数据挖掘 嵌入式系统 植物 生物 操作系统 物理 量子力学
作者
Fei Luo,Salabat Khan,Yandao Huang,Kaishun Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1711-1723 被引量:21
标识
DOI:10.1109/jiot.2022.3209084
摘要

Wearable devices equipped with a variety of sensors facilitate the measurement of physiological and behavioral characteristics. Activity-based person identification is considered an emerging and fast-evolving technology in security and access control fields. Wearables, such as smartphones, Apple Watch, and Google glass can continuously sense and collect activity-related information of users, and activity patterns can be extracted for differentiating different people. Although various human activities have been widely studied, few of them (gaits and keystrokes) have been used for person identification. In this article, we performed person identification using two public benchmark data sets (UCI-HAR and WISDM2019), which are collected from several different activities using multimodal sensors (accelerometer and gyroscope) embedded in wearable devices (smartphone and smartwatch). We implemented eight classifiers, including an multivariate squeeze-and-excitation network (MSENet), time-series transformer (TST), temporal convolutional network (TCN), CNN-LSTM, ConvLSTM, XGBoost, decision tree, and $k$ -nearest neighbor. The proposed MSENet can model the relationship between different sensor data. It achieved the best person identification accuracies under different activities of 91.31% and 97.79%, respectively, for the public data sets of UCI-HAR and WISDM2019. We also investigated the effects of sensor modality, human activity, feature fusion, and window size for sensor signal segmentation. Compared to the related work, our approach has achieved the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评完成签到,获得积分20
1秒前
希望天下0贩的0应助Kaligash采纳,获得10
1秒前
xrzxlxj613814发布了新的文献求助10
3秒前
Denmark发布了新的文献求助10
4秒前
麦乐迪应助湛湛采纳,获得10
6秒前
泡泡球完成签到,获得积分10
6秒前
6秒前
10秒前
10秒前
lmg发布了新的文献求助10
11秒前
ll应助柳叶小弯刀采纳,获得10
11秒前
科目三应助无辜的梦竹采纳,获得10
11秒前
12秒前
斯文败类应助杨佳晨采纳,获得10
13秒前
13秒前
14秒前
琪琪完成签到,获得积分10
14秒前
Kaligash发布了新的文献求助10
14秒前
天玄一刀完成签到,获得积分10
15秒前
littlechu发布了新的文献求助10
18秒前
19秒前
19秒前
Nnn完成签到,获得积分10
21秒前
Fa完成签到,获得积分10
21秒前
21秒前
冬菊完成签到 ,获得积分10
21秒前
小郭发布了新的文献求助10
22秒前
田様应助天行健123采纳,获得10
22秒前
酷波er应助Focus_BG采纳,获得10
23秒前
所所应助King采纳,获得10
23秒前
香蕉梨愁完成签到,获得积分10
23秒前
23秒前
TanFT发布了新的文献求助10
23秒前
干饭大王应助zeyin采纳,获得10
24秒前
专注白昼应助活力的友卉采纳,获得10
24秒前
柳叶小弯刀完成签到,获得积分10
25秒前
义气秋灵完成签到,获得积分10
26秒前
26秒前
科研通AI5应助ning采纳,获得20
27秒前
丘比特应助琪琪采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403