Activity-Based Person Identification Using Multimodal Wearable Sensor Data

计算机科学 活动识别 可穿戴计算机 智能手表 加速度计 人工智能 可穿戴技术 鉴定(生物学) 机器学习 传感器融合 陀螺仪 特征提取 模式识别(心理学) 数据挖掘 嵌入式系统 植物 生物 操作系统 物理 量子力学
作者
Fei Luo,Salabat Khan,Yandao Huang,Kaishun Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1711-1723 被引量:21
标识
DOI:10.1109/jiot.2022.3209084
摘要

Wearable devices equipped with a variety of sensors facilitate the measurement of physiological and behavioral characteristics. Activity-based person identification is considered an emerging and fast-evolving technology in security and access control fields. Wearables, such as smartphones, Apple Watch, and Google glass can continuously sense and collect activity-related information of users, and activity patterns can be extracted for differentiating different people. Although various human activities have been widely studied, few of them (gaits and keystrokes) have been used for person identification. In this article, we performed person identification using two public benchmark data sets (UCI-HAR and WISDM2019), which are collected from several different activities using multimodal sensors (accelerometer and gyroscope) embedded in wearable devices (smartphone and smartwatch). We implemented eight classifiers, including an multivariate squeeze-and-excitation network (MSENet), time-series transformer (TST), temporal convolutional network (TCN), CNN-LSTM, ConvLSTM, XGBoost, decision tree, and $k$ -nearest neighbor. The proposed MSENet can model the relationship between different sensor data. It achieved the best person identification accuracies under different activities of 91.31% and 97.79%, respectively, for the public data sets of UCI-HAR and WISDM2019. We also investigated the effects of sensor modality, human activity, feature fusion, and window size for sensor signal segmentation. Compared to the related work, our approach has achieved the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美悟空完成签到,获得积分10
1秒前
1秒前
4秒前
桐桐应助神勇的广缘采纳,获得10
5秒前
修越完成签到 ,获得积分10
5秒前
大个应助Akjan采纳,获得10
5秒前
violin发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
深情安青应助susan采纳,获得10
6秒前
奶茶一天一杯完成签到,获得积分10
7秒前
8秒前
打打应助jdsajdka采纳,获得10
8秒前
wbhou完成签到 ,获得积分10
9秒前
浮游应助yujx采纳,获得10
10秒前
王鸿鑫完成签到,获得积分10
10秒前
cryjslong发布了新的文献求助10
10秒前
Wangyingbo应助文件撤销了驳回
11秒前
华仔应助整齐千柳采纳,获得10
11秒前
田様应助Lion采纳,获得10
11秒前
11秒前
11秒前
11秒前
隐形曼青应助犹豫的夏波采纳,获得10
12秒前
12秒前
Qiu完成签到,获得积分10
12秒前
13秒前
ZJJ1230完成签到,获得积分10
14秒前
负责日记本完成签到,获得积分20
14秒前
15秒前
adearfish发布了新的文献求助10
15秒前
gr完成签到,获得积分10
16秒前
16秒前
16秒前
JamesPei应助bububusbu采纳,获得30
17秒前
今后应助Broadway Zhang采纳,获得10
17秒前
云宝完成签到,获得积分10
17秒前
zxt发布了新的文献求助10
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196