Activity-Based Person Identification Using Multimodal Wearable Sensor Data

计算机科学 活动识别 可穿戴计算机 智能手表 加速度计 人工智能 可穿戴技术 鉴定(生物学) 机器学习 传感器融合 陀螺仪 特征提取 模式识别(心理学) 数据挖掘 嵌入式系统 操作系统 生物 物理 量子力学 植物
作者
Fei Luo,Salabat Khan,Yandao Huang,Kaishun Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1711-1723 被引量:15
标识
DOI:10.1109/jiot.2022.3209084
摘要

Wearable devices equipped with a variety of sensors facilitate the measurement of physiological and behavioral characteristics. Activity-based person identification is considered an emerging and fast-evolving technology in security and access control fields. Wearables, such as smartphones, Apple Watch, and Google glass can continuously sense and collect activity-related information of users, and activity patterns can be extracted for differentiating different people. Although various human activities have been widely studied, few of them (gaits and keystrokes) have been used for person identification. In this article, we performed person identification using two public benchmark data sets (UCI-HAR and WISDM2019), which are collected from several different activities using multimodal sensors (accelerometer and gyroscope) embedded in wearable devices (smartphone and smartwatch). We implemented eight classifiers, including an multivariate squeeze-and-excitation network (MSENet), time-series transformer (TST), temporal convolutional network (TCN), CNN-LSTM, ConvLSTM, XGBoost, decision tree, and $k$ -nearest neighbor. The proposed MSENet can model the relationship between different sensor data. It achieved the best person identification accuracies under different activities of 91.31% and 97.79%, respectively, for the public data sets of UCI-HAR and WISDM2019. We also investigated the effects of sensor modality, human activity, feature fusion, and window size for sensor signal segmentation. Compared to the related work, our approach has achieved the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
1秒前
1秒前
lourahan发布了新的文献求助30
1秒前
2秒前
tan发布了新的文献求助10
2秒前
FJH发布了新的文献求助10
2秒前
科研通AI2S应助雨纷纷采纳,获得10
3秒前
3秒前
blue完成签到 ,获得积分10
3秒前
001发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助蒋锵锵采纳,获得10
4秒前
Virginia完成签到 ,获得积分10
5秒前
赵雄伟完成签到,获得积分10
5秒前
foxmail.com发布了新的文献求助10
6秒前
LN发布了新的文献求助20
6秒前
6秒前
672发布了新的文献求助10
7秒前
SciGPT应助dwt采纳,获得10
7秒前
9秒前
9秒前
烧炭匠发布了新的文献求助10
9秒前
11秒前
12秒前
现代帅哥发布了新的文献求助30
12秒前
缓慢的觅云应助圆圆采纳,获得150
14秒前
情怀应助FJH采纳,获得10
14秒前
14秒前
15秒前
窝窝头完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
星辰大海应助li采纳,获得10
17秒前
脑洞疼应助初四采纳,获得10
17秒前
17秒前
18秒前
19秒前
夏晴完成签到 ,获得积分10
19秒前
foxmail.com完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157924
求助须知:如何正确求助?哪些是违规求助? 2809233
关于积分的说明 7881039
捐赠科研通 2467723
什么是DOI,文献DOI怎么找? 1313692
科研通“疑难数据库(出版商)”最低求助积分说明 630480
版权声明 601943