Activity-Based Person Identification Using Multimodal Wearable Sensor Data

计算机科学 活动识别 可穿戴计算机 智能手表 加速度计 人工智能 可穿戴技术 鉴定(生物学) 机器学习 传感器融合 陀螺仪 特征提取 模式识别(心理学) 数据挖掘 嵌入式系统 植物 生物 操作系统 物理 量子力学
作者
Fei Luo,Salabat Khan,Yandao Huang,Kaishun Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1711-1723 被引量:21
标识
DOI:10.1109/jiot.2022.3209084
摘要

Wearable devices equipped with a variety of sensors facilitate the measurement of physiological and behavioral characteristics. Activity-based person identification is considered an emerging and fast-evolving technology in security and access control fields. Wearables, such as smartphones, Apple Watch, and Google glass can continuously sense and collect activity-related information of users, and activity patterns can be extracted for differentiating different people. Although various human activities have been widely studied, few of them (gaits and keystrokes) have been used for person identification. In this article, we performed person identification using two public benchmark data sets (UCI-HAR and WISDM2019), which are collected from several different activities using multimodal sensors (accelerometer and gyroscope) embedded in wearable devices (smartphone and smartwatch). We implemented eight classifiers, including an multivariate squeeze-and-excitation network (MSENet), time-series transformer (TST), temporal convolutional network (TCN), CNN-LSTM, ConvLSTM, XGBoost, decision tree, and $k$ -nearest neighbor. The proposed MSENet can model the relationship between different sensor data. It achieved the best person identification accuracies under different activities of 91.31% and 97.79%, respectively, for the public data sets of UCI-HAR and WISDM2019. We also investigated the effects of sensor modality, human activity, feature fusion, and window size for sensor signal segmentation. Compared to the related work, our approach has achieved the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助勤劳寒烟采纳,获得10
1秒前
1秒前
YUMMY发布了新的文献求助10
1秒前
2秒前
nancylan应助CooLIT采纳,获得10
2秒前
2秒前
orixero应助糟糕的秋白采纳,获得10
2秒前
GG完成签到,获得积分10
3秒前
3秒前
斯文白梦完成签到,获得积分10
3秒前
yy发布了新的文献求助10
4秒前
清心淡如水完成签到 ,获得积分10
4秒前
4秒前
5秒前
晚风发布了新的文献求助10
5秒前
wlscj给舒桐啊的求助进行了留言
5秒前
dyuguo3完成签到 ,获得积分10
5秒前
宥沐发布了新的文献求助10
6秒前
共享精神应助lyb采纳,获得10
6秒前
喳喳瑶完成签到,获得积分10
6秒前
orixero应助iebix采纳,获得10
9秒前
9秒前
9秒前
9秒前
行星一只兔完成签到 ,获得积分10
10秒前
10秒前
10秒前
斯文白梦发布了新的文献求助80
10秒前
ding应助开心的雁卉采纳,获得10
10秒前
米米米发布了新的文献求助10
10秒前
lzz完成签到,获得积分10
11秒前
飞快的大树完成签到,获得积分10
11秒前
12秒前
12秒前
情怀应助李晓亚采纳,获得10
12秒前
乐乐发布了新的文献求助10
12秒前
Lucas应助英吉利25采纳,获得10
12秒前
12秒前
13秒前
爆米花应助小H采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923