Surrogate ensemble assisted large-scale expensive optimization with random grouping

计算机科学 比例(比率) 量子力学 物理
作者
Mai Sun,Chaoli Sun,Xiaobo Li,Guochen Zhang,Farooq Akhtar
出处
期刊:Information Sciences [Elsevier]
卷期号:615: 226-237 被引量:14
标识
DOI:10.1016/j.ins.2022.09.063
摘要

Many fitness evaluations are often needed for large-scale evolutionary optimization to find the optimal solution. Therefore, evolutionary algorithms are impeded to solve computationally expensive problems. Surrogate assisted evolutionary algorithms (SAEAs) have been shown to have good capability in a finite computational budget. However, not many SAEAs, have been proposed for large-scale expensive problems. The main reason is that a proper surrogate model is challenging to be trained due to the curse of dimension. In this paper, we propose to employ the random grouping technique to divide a large-scale optimization problem into several low-dimensional sub-problems. Then a surrogate ensemble is trained for each sub-problem to assist the sub-problem optimization. The next parent population for large-scale optimization will be generated by the horizontal composition of the populations for sub-problem optimization. Furthermore, the best solution found so far for the sub-problem with the best population mean fitness value will be used to replace the best solution found so far for the large-scale problem on its corresponding dimensions, and the new solution will be evaluated using the expensive objective function. The experimental results on CEC’2013 benchmark problems show that the proposed method is effective and efficient for solving large-scale expensive optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JamesPei应助杨震采纳,获得10
2秒前
2秒前
xuan发布了新的文献求助10
3秒前
Yuki酱发布了新的文献求助10
3秒前
旺仔发布了新的文献求助10
5秒前
6秒前
6秒前
hj发布了新的文献求助10
7秒前
呜哈哈发布了新的文献求助60
8秒前
9秒前
10秒前
Galaxy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
溜铭钛完成签到 ,获得积分10
14秒前
16秒前
17秒前
17秒前
浮游应助外向的宛白采纳,获得10
18秒前
任团完成签到,获得积分10
20秒前
xuan完成签到,获得积分10
20秒前
hj发布了新的文献求助10
21秒前
涔雨发布了新的文献求助10
22秒前
纸速度发布了新的文献求助10
23秒前
WB87应助科研通管家采纳,获得10
23秒前
柏林寒冬应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得20
23秒前
老阎应助科研通管家采纳,获得30
23秒前
23秒前
Zx_1993应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
WB87应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
老阎应助科研通管家采纳,获得30
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425307
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167531
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444320
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412721