Surrogate ensemble assisted large-scale expensive optimization with random grouping

计算机科学 比例(比率) 量子力学 物理
作者
Mai Sun,Chaoli Sun,Xiaobo Li,Guochen Zhang,Farooq Akhtar
出处
期刊:Information Sciences [Elsevier BV]
卷期号:615: 226-237 被引量:14
标识
DOI:10.1016/j.ins.2022.09.063
摘要

Many fitness evaluations are often needed for large-scale evolutionary optimization to find the optimal solution. Therefore, evolutionary algorithms are impeded to solve computationally expensive problems. Surrogate assisted evolutionary algorithms (SAEAs) have been shown to have good capability in a finite computational budget. However, not many SAEAs, have been proposed for large-scale expensive problems. The main reason is that a proper surrogate model is challenging to be trained due to the curse of dimension. In this paper, we propose to employ the random grouping technique to divide a large-scale optimization problem into several low-dimensional sub-problems. Then a surrogate ensemble is trained for each sub-problem to assist the sub-problem optimization. The next parent population for large-scale optimization will be generated by the horizontal composition of the populations for sub-problem optimization. Furthermore, the best solution found so far for the sub-problem with the best population mean fitness value will be used to replace the best solution found so far for the large-scale problem on its corresponding dimensions, and the new solution will be evaluated using the expensive objective function. The experimental results on CEC’2013 benchmark problems show that the proposed method is effective and efficient for solving large-scale expensive optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满满嘟嘟完成签到,获得积分10
1秒前
1秒前
芦泸发布了新的文献求助10
1秒前
Meng完成签到,获得积分10
2秒前
2秒前
2秒前
Hello应助机灵飞珍采纳,获得10
2秒前
Xinzz发布了新的文献求助10
2秒前
qmac发布了新的文献求助10
3秒前
MchemG应助友好的半仙采纳,获得10
3秒前
万能图书馆应助mario采纳,获得10
3秒前
3秒前
zyc1111111完成签到,获得积分10
3秒前
销户完成签到 ,获得积分10
4秒前
4秒前
完美世界应助大恩区采纳,获得20
4秒前
研友_屈不愁完成签到,获得积分10
4秒前
4秒前
开朗世立完成签到,获得积分10
4秒前
麻辣梗儿完成签到,获得积分10
5秒前
鹿友绿完成签到,获得积分10
5秒前
栗松琛发布了新的文献求助10
5秒前
桐桐应助海山了采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
午午午午完成签到 ,获得积分10
7秒前
paparazzi221发布了新的文献求助10
7秒前
7秒前
neechine完成签到,获得积分10
7秒前
Jin发布了新的文献求助10
7秒前
qmac完成签到,获得积分10
8秒前
今后应助Ed23采纳,获得10
8秒前
9秒前
慕青应助ZGZ123采纳,获得10
9秒前
哆啦顺利毕业完成签到 ,获得积分10
9秒前
lucky完成签到,获得积分20
10秒前
脑洞疼应助dxx采纳,获得10
10秒前
11秒前
zccvbn发布了新的文献求助10
12秒前
善学以致用应助梦玲采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475