GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

脑电图 计算机科学 脑-机接口 解码方法 模式识别(心理学) 卷积神经网络 运动表象 人工智能 图形 联营 自回归模型 Softmax函数 算法 理论计算机科学 数学 心理学 计量经济学 精神科
作者
Yimin Hou,Shuyue Jia,Xiangmin Lun,Ziqian Hao,Yan Shi,Yang Li,Rui Zeng,Jinglei Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7312-7323 被引量:90
标识
DOI:10.1109/tnnls.2022.3202569
摘要

Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step towards better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琦琦发布了新的文献求助10
刚刚
liuzengzhang666完成签到,获得积分10
刚刚
1秒前
。。。完成签到,获得积分10
1秒前
1秒前
2秒前
ED应助牛马人生采纳,获得10
2秒前
achill完成签到,获得积分10
2秒前
Hui完成签到,获得积分10
2秒前
韩soso完成签到,获得积分10
3秒前
迷人幻竹发布了新的文献求助30
3秒前
可爱芷容发布了新的文献求助10
3秒前
动听梨愁完成签到,获得积分10
4秒前
星辰大海应助bluesky采纳,获得10
5秒前
星辰大海应助盛夏蔚来采纳,获得10
5秒前
Embrace发布了新的文献求助10
5秒前
wdy111举报Ann求助涉嫌违规
6秒前
6秒前
dhts应助比巴卜采纳,获得10
7秒前
归尘发布了新的文献求助10
8秒前
8秒前
8秒前
脑洞疼应助Joe采纳,获得20
8秒前
10秒前
李雯完成签到,获得积分10
10秒前
上官若男应助kassidy采纳,获得10
11秒前
夕沫发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
ws发布了新的文献求助10
12秒前
13秒前
13秒前
书记完成签到,获得积分10
14秒前
土豆丝P完成签到,获得积分10
15秒前
Wind发布了新的文献求助10
16秒前
92626完成签到,获得积分10
16秒前
16秒前
16秒前
SYLH应助云枝采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653