GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

脑电图 计算机科学 脑-机接口 解码方法 模式识别(心理学) 卷积神经网络 运动表象 人工智能 图形 联营 自回归模型 算法 理论计算机科学 数学 心理学 神经科学 计量经济学
作者
Yimin Hou,Shuyue Jia,Xiangmin Lun,Ziqian Hao,Yan Shi,Yahui Li,Rui Zhou,Jinglei Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:18
标识
DOI:10.1109/tnnls.2022.3202569
摘要

Toward the development of effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at https://github.com/SuperBruceJia/ EEG-DL for scientific research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得20
1秒前
yar应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
南音完成签到,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
xjcy应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
123应助科研通管家采纳,获得20
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
xjcy应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得30
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
lingua应助hkh采纳,获得10
3秒前
鳗鱼蹇发布了新的文献求助10
3秒前
科研通AI2S应助太空工程师采纳,获得10
5秒前
魔镜魔镜发布了新的文献求助10
6秒前
6秒前
6秒前
Orange应助专注鼠标采纳,获得30
6秒前
我不爱池鱼应助polly采纳,获得10
7秒前
潇然发布了新的文献求助10
7秒前
十字丝应助sxk795采纳,获得30
7秒前
LmaPN7发布了新的文献求助30
7秒前
NexusExplorer应助Dream采纳,获得10
8秒前
缥缈傥发布了新的文献求助10
9秒前
9秒前
12秒前
12秒前
嘉星糖发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301649
求助须知:如何正确求助?哪些是违规求助? 2936248
关于积分的说明 8476984
捐赠科研通 2610006
什么是DOI,文献DOI怎么找? 1424988
科研通“疑难数据库(出版商)”最低求助积分说明 662216
邀请新用户注册赠送积分活动 646340