清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Li-ion battery degradation modes diagnosis via Convolutional Neural Networks

计算机科学 杠杆(统计) 卷积神经网络 电池(电) 人工智能 人工神经网络 深度学习 机器学习 功率(物理) 量子力学 物理
作者
Nahuel Costa,Luciano Sánchez,David Anseán,Matthieu Dubarry
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:55: 105558-105558 被引量:30
标识
DOI:10.1016/j.est.2022.105558
摘要

Lithium-ion batteries are ubiquitous in modern society with a presence in storage systems, electric cars, portable electronics, and many more applications. Consequently, to enable safe and reliable use of LIB systems, diagnosis and prognosis have become critical. Within the field of Artificial Intelligence, Deep Learning algorithms have achieved significant impacts for image or object recognition, yet their application for battery diagnosis is still at an early developing stage. In this paper, we propose a novel approach for battery degradation diagnosis based on the representation of battery data as images, in order to leverage the use of well-established Convolutional Neural Networks. Accuracy for diagnosis, via the quantification of degradation modes was tested on synthetic data. Our approach was shown to be more accurate than current methodologies with Root Mean Squared Errors around 2% on average for 1000 duty cycles compared to between 2.64 to 7.27% for other state-of-the-art algorithms. We also show that the proposed methodology adapts to various cell chemistries and constructive configurations, and validate its applicability to a real-world scenario with experimental data from commercial LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
hhuajw完成签到,获得积分10
19秒前
zzz发布了新的文献求助10
21秒前
和气生财君完成签到 ,获得积分10
55秒前
财路通八方完成签到 ,获得积分10
1分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
3分钟前
123发布了新的文献求助10
3分钟前
胡菲诺发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Jenny完成签到 ,获得积分10
4分钟前
123关闭了123文献求助
4分钟前
fanniezhao完成签到,获得积分20
4分钟前
QCB完成签到 ,获得积分10
4分钟前
加菲丰丰应助fanniezhao采纳,获得30
4分钟前
123发布了新的文献求助10
4分钟前
科研通AI5应助123采纳,获得10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得150
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得150
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Fairy完成签到,获得积分10
7分钟前
Frank完成签到,获得积分10
7分钟前
火星的雪完成签到 ,获得积分0
7分钟前
脑洞疼应助xuan2022采纳,获得10
7分钟前
7分钟前
Kevin发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
白面包不吃鱼完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
ddd发布了新的文献求助10
8分钟前
Ji发布了新的文献求助30
8分钟前
月军完成签到 ,获得积分10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187234
求助须知:如何正确求助?哪些是违规求助? 4372086
关于积分的说明 13612892
捐赠科研通 4225047
什么是DOI,文献DOI怎么找? 2317321
邀请新用户注册赠送积分活动 1315994
关于科研通互助平台的介绍 1265461