In-process vision monitoring methods for aircraft coating laser cleaning based on deep learning

人工智能 计算机科学 级联 均方误差 特征(语言学) 过程(计算) 表面粗糙度 深度学习 人工神经网络 交叉口(航空) 模式识别(心理学) 计算机视觉 材料科学 数学 统计 工程类 操作系统 哲学 化学工程 航空航天工程 语言学 复合材料
作者
Qichun Hu,Xiaolong Wei,Xiaoqing Liang,Liucheng Zhou,Weifeng He,Yi-Peng Eve Chang,Qingyi Zhang,Caizhi Li,X. Wu
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:160: 107291-107291 被引量:18
标识
DOI:10.1016/j.optlaseng.2022.107291
摘要

In order to protect the substrate during the cleaning process as well as evaluate the cleaning effect and surface quality after laser cleaning of aircraft coatings, a visual monitoring method based on deep learning is proposed. In this paper, the data sets of "flame recognition-cleaning quality evaluation" and "optical image-surface roughness" are constructed and data enhancement is performed. The SSEResNet backbone network which can effectively extract the details of the input image is designed by using the feature fusion method. The Cascade R-CNN object detection model is improved by using SSEResNet, BiFPN and Soft-NMS, and the SSEResNet101 regression model which can directly predict surface roughness from optical images is proposed based on ResNet101. Model comparison and ablation experiments show that the above two deep learning models proposed by us have excellent detection ability and regression prediction performance, and can realize flame recognition, cleaning effect judgment during laser cleaning as well as post-cleaning surface quality evaluation. In this paper, the effects of four different learning rate decay strategies on the models are further studied. The results show that the training effect of CosineAnnealing with warm restart method is the best. In SSEResNet101 model, the training mean square error (MSE) loss is 0.0249, the mean absolute error (MAE) is 0.278μm, and the test MAE is 0.245μm; In improved Cascade R-CNN model, the mean average precision (mAP) value of intersection over union (IoU=0.6) reaches 93.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃乘风完成签到,获得积分10
1秒前
Anxinxin完成签到,获得积分10
1秒前
阳佟冬卉完成签到,获得积分10
2秒前
Silence发布了新的文献求助10
2秒前
2秒前
通通通发布了新的文献求助10
3秒前
帅气的秘密完成签到 ,获得积分10
3秒前
领导范儿应助马建国采纳,获得10
3秒前
lysixsixsix完成签到,获得积分10
3秒前
4秒前
jia完成签到,获得积分10
4秒前
欣喜乐天发布了新的文献求助10
4秒前
Kiyotaka完成签到,获得积分10
4秒前
5秒前
季夏发布了新的文献求助10
5秒前
Tingshan发布了新的文献求助20
6秒前
背后的诺言完成签到 ,获得积分20
6秒前
GHOST完成签到,获得积分20
7秒前
7秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
omo发布了新的文献求助10
7秒前
Akim应助糊糊采纳,获得10
8秒前
Zn应助dsjlove采纳,获得10
8秒前
月球宇航员完成签到,获得积分10
8秒前
8秒前
英姑应助亲爱的安德烈采纳,获得10
10秒前
今后应助workwork采纳,获得10
10秒前
10秒前
落后翠柏发布了新的文献求助10
10秒前
淡然凝丹完成签到,获得积分10
10秒前
Y_Jfeng完成签到,获得积分10
11秒前
潼熙甄完成签到 ,获得积分10
12秒前
Lucas应助糖糖采纳,获得10
12秒前
wyblobin发布了新的文献求助10
12秒前
星辰大海应助叶飞荷采纳,获得10
12秒前
wanmiao12完成签到,获得积分10
13秒前
13秒前
14秒前
lmr完成签到,获得积分10
14秒前
gu完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762