In-process vision monitoring methods for aircraft coating laser cleaning based on deep learning

人工智能 计算机科学 级联 均方误差 特征(语言学) 过程(计算) 表面粗糙度 深度学习 人工神经网络 交叉口(航空) 模式识别(心理学) 计算机视觉 材料科学 数学 统计 工程类 操作系统 哲学 化学工程 航空航天工程 语言学 复合材料
作者
Qichun Hu,Xiaolong Wei,Xiaoqing Liang,Liucheng Zhou,Weifeng He,Yi-Peng Eve Chang,Qingyi Zhang,Caizhi Li,X. Wu
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:160: 107291-107291 被引量:22
标识
DOI:10.1016/j.optlaseng.2022.107291
摘要

In order to protect the substrate during the cleaning process as well as evaluate the cleaning effect and surface quality after laser cleaning of aircraft coatings, a visual monitoring method based on deep learning is proposed. In this paper, the data sets of "flame recognition-cleaning quality evaluation" and "optical image-surface roughness" are constructed and data enhancement is performed. The SSEResNet backbone network which can effectively extract the details of the input image is designed by using the feature fusion method. The Cascade R-CNN object detection model is improved by using SSEResNet, BiFPN and Soft-NMS, and the SSEResNet101 regression model which can directly predict surface roughness from optical images is proposed based on ResNet101. Model comparison and ablation experiments show that the above two deep learning models proposed by us have excellent detection ability and regression prediction performance, and can realize flame recognition, cleaning effect judgment during laser cleaning as well as post-cleaning surface quality evaluation. In this paper, the effects of four different learning rate decay strategies on the models are further studied. The results show that the training effect of CosineAnnealing with warm restart method is the best. In SSEResNet101 model, the training mean square error (MSE) loss is 0.0249, the mean absolute error (MAE) is 0.278μm, and the test MAE is 0.245μm; In improved Cascade R-CNN model, the mean average precision (mAP) value of intersection over union (IoU=0.6) reaches 93.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
Jasper应助整齐便当采纳,获得10
3秒前
愉快的皮卡丘完成签到 ,获得积分10
4秒前
yyy发布了新的文献求助10
6秒前
6秒前
暖部发布了新的文献求助10
6秒前
wzppp发布了新的文献求助10
6秒前
蟹黄丸子发布了新的文献求助10
6秒前
8秒前
微笑立轩完成签到,获得积分10
10秒前
10秒前
鼠大帅发布了新的文献求助10
11秒前
18秒前
超级瑶瑶发布了新的文献求助10
24秒前
林夕完成签到,获得积分10
30秒前
orixero应助萨尔莫斯采纳,获得10
35秒前
呜呜发布了新的文献求助10
36秒前
36秒前
行走的猫完成签到 ,获得积分10
37秒前
38秒前
tracer526发布了新的文献求助10
40秒前
优雅的女神完成签到,获得积分10
41秒前
ikutovaya完成签到,获得积分10
42秒前
理躺丁真完成签到,获得积分10
43秒前
45秒前
SJD完成签到,获得积分0
46秒前
呜呜完成签到,获得积分10
46秒前
领导范儿应助超级瑶瑶采纳,获得10
47秒前
萨尔莫斯发布了新的文献求助10
48秒前
科研通AI6应助蟹黄丸子采纳,获得30
49秒前
可靠小懒虫完成签到,获得积分10
50秒前
今后应助善良的广缘采纳,获得10
50秒前
欢喜的早晨完成签到,获得积分10
54秒前
英俊的铭应助tracer526采纳,获得10
55秒前
彭于晏应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
orixero应助科研通管家采纳,获得10
56秒前
蓝天应助科研通管家采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963