Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China

环境科学 土壤水分 污染 环境化学 农业 土工试验 土壤污染 重金属 分摊 环境工程 土壤科学 化学 地理 生态学 考古 法学 政治学 生物
作者
Taoran Shi,Jingru Zhang,Wenjie Shen,Jun Wang,Xingyuan Li
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:245: 114107-114107 被引量:27
标识
DOI:10.1016/j.ecoenv.2022.114107
摘要

Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jialiu完成签到,获得积分10
刚刚
1秒前
停婷发布了新的文献求助10
2秒前
bingbing发布了新的文献求助10
2秒前
菠萝炒饭完成签到,获得积分10
3秒前
一键三连发布了新的文献求助10
3秒前
琦琦发布了新的文献求助10
4秒前
liuzengzhang666完成签到,获得积分10
4秒前
5秒前
。。。完成签到,获得积分10
5秒前
5秒前
6秒前
ED应助牛马人生采纳,获得10
6秒前
achill完成签到,获得积分10
6秒前
Hui完成签到,获得积分10
6秒前
韩soso完成签到,获得积分10
7秒前
迷人幻竹发布了新的文献求助30
7秒前
可爱芷容发布了新的文献求助10
7秒前
动听梨愁完成签到,获得积分10
8秒前
星辰大海应助bluesky采纳,获得10
9秒前
星辰大海应助盛夏蔚来采纳,获得10
9秒前
Embrace发布了新的文献求助10
9秒前
wdy111举报Ann求助涉嫌违规
10秒前
10秒前
dhts应助比巴卜采纳,获得10
11秒前
归尘发布了新的文献求助10
12秒前
12秒前
12秒前
脑洞疼应助Joe采纳,获得20
12秒前
14秒前
李雯完成签到,获得积分10
14秒前
上官若男应助kassidy采纳,获得10
15秒前
夕沫发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
ws发布了新的文献求助10
16秒前
17秒前
17秒前
书记完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653