Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China

环境科学 土壤水分 污染 环境化学 农业 土工试验 土壤污染 重金属 分摊 环境工程 土壤科学 化学 地理 生态学 考古 生物 政治学 法学
作者
Taoran Shi,Jingru Zhang,Wenjie Shen,Jun Wang,Xingyuan Li
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:245: 114107-114107 被引量:27
标识
DOI:10.1016/j.ecoenv.2022.114107
摘要

Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sikang发布了新的文献求助10
1秒前
wm关闭了wm文献求助
1秒前
999完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI6.1应助young采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
不相厌发布了新的文献求助10
2秒前
简单沛山发布了新的文献求助10
2秒前
安静代萱完成签到 ,获得积分10
3秒前
Echo完成签到,获得积分10
4秒前
4秒前
害羞的衫发布了新的文献求助10
6秒前
踏实水之发布了新的文献求助10
6秒前
陈露佳发布了新的文献求助10
7秒前
7秒前
牛油果发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助科研爱好者采纳,获得10
7秒前
木木三完成签到 ,获得积分10
8秒前
优秀的小蚂蚁完成签到,获得积分10
8秒前
搜集达人应助sikang采纳,获得10
9秒前
9秒前
llm19完成签到,获得积分10
9秒前
sssjjjxx完成签到,获得积分20
9秒前
imi发布了新的文献求助10
10秒前
天天快乐应助Koi采纳,获得10
10秒前
谢谢大佬完成签到,获得积分10
11秒前
深情安青应助夏沫星星球采纳,获得10
11秒前
keanu发布了新的文献求助10
12秒前
12秒前
木木三关注了科研通微信公众号
12秒前
华仔应助Zzzz采纳,获得10
12秒前
害羞的衫完成签到,获得积分10
12秒前
13秒前
拼搏迎梦完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201