Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China

环境科学 土壤水分 污染 环境化学 农业 土工试验 土壤污染 重金属 分摊 环境工程 土壤科学 化学 地理 生态学 考古 法学 政治学 生物
作者
Taoran Shi,Jingru Zhang,Wenjie Shen,Jun Wang,Xingyuan Li
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:245: 114107-114107 被引量:27
标识
DOI:10.1016/j.ecoenv.2022.114107
摘要

Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yesir完成签到,获得积分10
1秒前
研友_Lw4Ngn完成签到,获得积分10
2秒前
丰广富山发布了新的文献求助10
3秒前
优秀的白筠完成签到,获得积分10
4秒前
科研通AI2S应助muncy采纳,获得10
5秒前
6秒前
linxi发布了新的文献求助10
6秒前
8秒前
狂野的驳完成签到 ,获得积分10
8秒前
8秒前
完美秋烟关注了科研通微信公众号
9秒前
英俊一刀发布了新的文献求助20
9秒前
10秒前
胡明月完成签到,获得积分10
10秒前
啊啊啊啊完成签到,获得积分10
10秒前
Wei完成签到 ,获得积分10
10秒前
领导范儿应助阔达的宝莹采纳,获得10
11秒前
小邓完成签到,获得积分10
12秒前
晓星残月完成签到,获得积分10
13秒前
颜沛文完成签到,获得积分10
13秒前
梁羽生发布了新的文献求助10
15秒前
16秒前
风中的天空完成签到,获得积分10
19秒前
万能图书馆应助沉静丹寒采纳,获得10
19秒前
飘逸人达完成签到,获得积分20
19秒前
好咯怪你咯完成签到,获得积分10
20秒前
zhang08完成签到,获得积分10
20秒前
chenyunxia应助Dee采纳,获得10
21秒前
哈哈发布了新的文献求助10
21秒前
21秒前
美好乐松应助Chb采纳,获得10
22秒前
23秒前
24秒前
有川洋一完成签到 ,获得积分10
25秒前
乐乐应助冷酷的雅寒采纳,获得10
26秒前
tian发布了新的文献求助10
26秒前
晨曦完成签到,获得积分10
28秒前
哈哈完成签到,获得积分20
28秒前
领导范儿应助喜悦灵凡采纳,获得10
28秒前
海棠花未眠完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905