Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China

环境科学 土壤水分 污染 环境化学 农业 土工试验 土壤污染 重金属 分摊 环境工程 土壤科学 化学 地理 生态学 考古 生物 政治学 法学
作者
Taoran Shi,Jingru Zhang,Wenjie Shen,Jun Wang,Xingyuan Li
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:245: 114107-114107 被引量:27
标识
DOI:10.1016/j.ecoenv.2022.114107
摘要

Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
CipherSage应助xona采纳,获得10
1秒前
2秒前
CodeCraft应助wg采纳,获得10
2秒前
2秒前
2秒前
3秒前
fengfengman完成签到,获得积分10
5秒前
276860发布了新的文献求助10
6秒前
不倦发布了新的文献求助10
7秒前
7秒前
1821977451发布了新的文献求助10
7秒前
LL发布了新的文献求助10
7秒前
wwb发布了新的文献求助10
8秒前
9秒前
在水一方应助嘿嘿嘿采纳,获得10
10秒前
xiaoQ完成签到,获得积分10
10秒前
追寻梦松完成签到,获得积分10
11秒前
小明应助yu采纳,获得10
11秒前
sen完成签到,获得积分10
12秒前
阿拉完成签到,获得积分10
14秒前
ningwu完成签到,获得积分10
14秒前
甜蜜花完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
Hanoi347应助威武道罡采纳,获得10
17秒前
子车茗应助fuzzyonion采纳,获得20
18秒前
19秒前
wg发布了新的文献求助10
19秒前
慧慧完成签到,获得积分10
19秒前
Yingkun_Xu发布了新的文献求助10
20秒前
cxf发布了新的文献求助10
22秒前
英姑应助asd采纳,获得10
22秒前
Hanoi347发布了新的文献求助200
25秒前
Lucas应助微笑傲白采纳,获得10
25秒前
烟花应助粗暴的坤采纳,获得10
25秒前
sleep应助Bismarck采纳,获得10
27秒前
yyyyy完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291