吸附
环境化学
微塑料
生物降解
化学
降级(电信)
分配系数
生物利用度
微生物降解
微生物
细菌
生物
有机化学
计算机科学
吸附
电信
生物信息学
遗传学
作者
Qing Sun,Shu-Yan Ren,Hong‐Gang Ni
标识
DOI:10.1016/j.envpol.2022.120238
摘要
Halogenated PAHs (HPAHs) are ubiquitous in the environment and have a toxicity similar to that of dioxin. Microplastics exist widely in the environment, and their sorption allows them to act as carriers of HPAHs, potentially changing the bioavailability of HPAHs. However, to the best of our knowledge related studies are limited. In this study, degrading bacteria of five HPAHs were cultivated from mangrove sediments. Among them, the Hyphomicrobium genus has good degradation ability on 9-BrAnt, 2-BrPhe and 2-ClPhe. The degradation process is in line with the first-order degradation kinetic characteristics. The kinetic equations of five kinds of HPAHs showed that the degradation half-lives are 0.65 days (2-BrFle), 0.79 days (9-ClPhe), 1.50 days (2-ClAnt), 5.94 days (9-BrPhe) and 14.1 days (9-BrAnt). The greater the number of benzene rings and the heavier the halogen substituents, the slower the degradation of HPAHs. The sorption of microplastics inhibited the biodegradation of HPAHs, and the degradation half-life of HPAHs will be extended from 0.65 to 14.1 days (the average is 4.59 days) to 1.71-9.93 days (average 5.40 days) for PA, 0.70-35.2 days (average 12.8 days) for PE, 6.02-28.2 (average 15.7 days) days for POM, and 4.60-24.0 (average 19.2 days) days for PP, which is mainly related to the partition coefficient between microplastics and water. This study provides a reference for reducing the uncertainty of the ecological risk assessment of HOCs in the aquatic environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI