Elucidating the spatial determinants of heavy metals pollution in different agricultural soils using geographically weighted regression

农业 土壤水分 环境科学 污染 经济作物 农用地 空间变异性 农业污染 环境保护 生态学 土壤科学 数学 统计 生物
作者
Lixiao Yang,Fanhao Meng,Chen Ma,Dawei Hou
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:853: 158628-158628 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.158628
摘要

Intensive human activities caused massive socio-economic and land-use changes that directly or indirectly resulted in excessive accumulation of heavy metals in agricultural soils. The goal of our study was to explore the spatial determinants of heavy metals pollution for agricultural soil environment in Sunan economic region of China. We applied geographically weighted regressions (GWR) to measure the spatially varying relationship as well as conducted principal component analysis (PCA) to incorporate multiple variables. The results indicated that our GWR models performed well to identify the determinants of heavy metal pollution in different agricultural soils with relatively high values of local R2. Heavy metal pollution in Sunan economic region was crucially determined by accessibility, varying agricultural inputs as well as the composition and configuration of agricultural landscape, and such impacts exhibited significantly heterogeneity over space and farming practices. For the both agricultural soils, the major variance proportion for our determinants can be grouped into the first four factors (82.64 % for cash-crop soils and 73.065 for cereal-crop soils), indicating the incorporation and interactions between variables determining agricultural soil environment. Our findings yielded valuable insights into understanding the spatially varying 'human-land interrelationship' in rapidly developing areas. Methodologically, our study highlighted the applicability of geographically weighted regression to explore the spatial determinants associated with unwanted environmental outcomes in large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助苹果雁易采纳,获得10
4秒前
小科完成签到,获得积分10
4秒前
5秒前
科研通AI5应助小宇子采纳,获得10
5秒前
zhl完成签到,获得积分10
6秒前
所所应助yuki采纳,获得20
6秒前
6秒前
一蓑烟雨任平生完成签到,获得积分10
7秒前
kingwill应助longtengfei采纳,获得20
7秒前
8秒前
深情安青应助不忘初心采纳,获得10
9秒前
王木木完成签到 ,获得积分10
9秒前
10秒前
BFQQQQ发布了新的文献求助10
11秒前
ww发布了新的文献求助30
11秒前
377发布了新的文献求助10
12秒前
zxsv完成签到,获得积分10
12秒前
12秒前
Tempo完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助JLLi采纳,获得10
13秒前
13秒前
13秒前
14秒前
成成成成成成啊完成签到,获得积分10
14秒前
Eason完成签到,获得积分10
16秒前
星星发布了新的文献求助10
16秒前
Hello应助tyty采纳,获得10
16秒前
Akim应助吱吱采纳,获得10
16秒前
wxy完成签到,获得积分10
16秒前
16秒前
16秒前
qwer完成签到 ,获得积分10
16秒前
绿野金发布了新的文献求助10
17秒前
17秒前
丘比特应助陈橙橙子采纳,获得10
17秒前
妙妙脆角完成签到,获得积分10
18秒前
18秒前
rnf发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267