Fully automatic coronary calcium scoring in non-ECG-gated low-dose chest CT: comparison with ECG-gated cardiac CT

医学 组内相关 可靠性(半导体) 置信区间 卡帕 神经组阅片室 冠状动脉钙 科恩卡帕 放射科 计算机断层摄影术 核医学 心脏病学 内科学 机器学习 计算机科学 神经学 功率(物理) 哲学 物理 心理测量学 精神科 临床心理学 量子力学 语言学
作者
Young Joo Suh,Cherry Kim,June‐Goo Lee,Hongmin Oh,Hee Jun Kang,Young‐Hak Kim,Dong Hyun Yang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (2): 1254-1265 被引量:15
标识
DOI:10.1007/s00330-022-09117-3
摘要

To validate an artificial intelligence (AI)–based fully automatic coronary artery calcium (CAC) scoring system on non-electrocardiogram (ECG)–gated low-dose chest computed tomography (LDCT) using multi-institutional datasets with manual CAC scoring as the reference standard. This retrospective study included 452 subjects from three academic institutions, who underwent both ECG-gated calcium scoring computed tomography (CSCT) and LDCT scans. For all CSCT and LDCT scans, automatic CAC scoring (CAC_auto) was performed using AI-based software, and manual CAC scoring (CAC_man) was set as the reference standard. The reliability and agreement of CAC_auto was evaluated and compared with that of CAC_man using intraclass correlation coefficients (ICCs) and Bland-Altman plots. The reliability between CAC_auto and CAC_man for CAC severity categories was analyzed using weighted kappa (κ) statistics. CAC_auto on CSCT and LDCT yielded a high ICC (0.998, 95% confidence interval (CI) 0.998–0.999 and 0.989, 95% CI 0.987–0.991, respectively) and a mean difference with 95% limits of agreement of 1.3 ± 37.1 and 0.8 ± 75.7, respectively. CAC_auto achieved excellent reliability for CAC severity (κ = 0.918–0.972) on CSCT and good to excellent but heterogenous reliability among datasets (κ = 0.748–0.924) on LDCT. The application of an AI-based automatic CAC scoring software to LDCT shows good to excellent reliability in CAC score and CAC severity categorization in multi-institutional datasets; however, the reliability varies among institutions. • AI-based automatic CAC scoring on LDCT shows excellent reliability with manual CAC scoring in multi-institutional datasets. • The reliability for CAC score–based severity categorization varies among datasets. • Automatic scoring for LDCT shows a higher false-positive rate than automatic scoring for CSCT, and most common causes of a false-positive are image noise and artifacts for both CSCT and LDCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lanyx完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
Eason完成签到,获得积分10
2秒前
Lanyx发布了新的文献求助10
4秒前
充电宝应助杜琦采纳,获得10
4秒前
Platinum完成签到,获得积分10
4秒前
猪猪侠发布了新的文献求助10
5秒前
6秒前
Felix发布了新的文献求助10
6秒前
anonymous发布了新的文献求助10
6秒前
anasy发布了新的文献求助10
9秒前
疯狂的向日葵完成签到,获得积分10
10秒前
LFH关注了科研通微信公众号
10秒前
大鱼完成签到,获得积分10
11秒前
小乐儿~完成签到,获得积分10
11秒前
quora发布了新的文献求助10
17秒前
丛士乔完成签到,获得积分10
18秒前
18秒前
19秒前
必发文章完成签到,获得积分10
20秒前
23秒前
dique3hao发布了新的文献求助10
23秒前
杜琦发布了新的文献求助10
24秒前
Ava应助鸿鲤采纳,获得10
25秒前
易旸完成签到,获得积分10
25秒前
25秒前
25秒前
25秒前
LFH发布了新的文献求助10
26秒前
汉堡包应助AA采纳,获得10
28秒前
罗浩楠完成签到,获得积分10
28秒前
caicai发布了新的文献求助10
28秒前
巫马尔槐完成签到,获得积分10
29秒前
zz发布了新的文献求助10
31秒前
必发文章发布了新的文献求助10
32秒前
caicai完成签到,获得积分10
34秒前
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578