A Coupled Spintronics Neuromorphic Approach for High‐Performance Reservoir Computing

神经形态工程学 油藏计算 自旋电子学 计算机科学 计算机体系结构 利用 边缘计算 计算机工程 人工智能 GSM演进的增强数据速率 人工神经网络 物理 计算机安全 量子力学 铁磁性 循环神经网络
作者
Nozomi Akashi,Yasuo Kuniyoshi,Sumito Tsunegi,Tadatsugu Taniguchi,Mitsuhiro Nishida,Ryo Sakurai,Yasumichi Wakao,Kenji Kawashima,Kohei Nakajima
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:4 (10) 被引量:11
标识
DOI:10.1002/aisy.202200123
摘要

The rapid development in the field of artificial intelligence has increased the demand for neuromorphic computing hardware and its information‐processing capability. A spintronics device is a promising candidate for neuromorphic computing hardware and can be used in extreme environments due to its high resistance to radiation. Improving the information‐processing capability of neuromorphic computing is an important challenge for implementation. Herein, a novel neuromorphic computing framework using spintronics devices is proposed. This framework is called coupled spintronics reservoir (CSR) computing and exploits the high‐dimensional dynamics of coupled spin‐torque oscillators as a computational resource. The relationships among various bifurcations of the CSR and its information‐processing capabilities through numerical experiments are analyzed and it is found that certain configurations of the CSR boost the information‐processing capability of the spintronics reservoir toward or even beyond the standard level of machine learning networks. The effectiveness of our approach is demonstrated through conventional machine learning benchmarks and edge computing in real physical experiments using pneumatic artificial muscle‐based wearables, which assist human operations in various environments. This study significantly advances the availability of neuromorphic computing for practical uses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助yangfeidong采纳,获得10
刚刚
chenshiyi185完成签到,获得积分10
1秒前
快乐的胖子应助三哥采纳,获得30
1秒前
3秒前
斯文钢笔完成签到 ,获得积分10
4秒前
5秒前
山雀完成签到,获得积分10
5秒前
BINGBONG关注了科研通微信公众号
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助11采纳,获得10
9秒前
yangfeidong发布了新的文献求助10
11秒前
11秒前
12秒前
心猿应助g0123采纳,获得10
13秒前
13秒前
yuilcl发布了新的文献求助10
14秒前
wbshore发布了新的文献求助10
16秒前
16秒前
聪慧的正豪应助郑浩采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
orixero应助巧乐兹采纳,获得10
21秒前
瓦力文发布了新的文献求助10
21秒前
24秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
25秒前
25秒前
CipherSage应助yuilcl采纳,获得10
26秒前
香蕉觅云应助嗬娜采纳,获得10
26秒前
坦率网络发布了新的文献求助10
26秒前
Jasper应助小巩采纳,获得10
27秒前
28秒前
29秒前
30秒前
lym发布了新的文献求助10
30秒前
30秒前
32秒前
法外狂徒完成签到,获得积分0
32秒前
哩蒜呐发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941102
求助须知:如何正确求助?哪些是违规求助? 4207170
关于积分的说明 13076816
捐赠科研通 3985940
什么是DOI,文献DOI怎么找? 2182404
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110281