Constructed wetlands as nature-based solutions in managing per-and poly-fluoroalkyl substances (PFAS): Evidence, mechanisms, and modelling

湿地 环境化学 环境科学 化学 环境工程 生态学 生物
作者
Pinelopi Savvidou,Gabriela Dotro,Pablo Campo,Frédéric Coulon,Tao Lyu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:934: 173237-173237 被引量:11
标识
DOI:10.1016/j.scitotenv.2024.173237
摘要

Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have gained widespread application in sustainable water and wastewater treatment and offer multiple environmental and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Nevertheless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to predict PFAS removal. These models showed better predictive performance compared to various mechanistic models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS contaminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial to obtain additional data for model development and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乾明少侠完成签到 ,获得积分10
刚刚
刚刚
1秒前
乐乐应助咿呀咿呀哟采纳,获得10
1秒前
1秒前
2秒前
cn发布了新的文献求助10
2秒前
2秒前
2秒前
ly发布了新的文献求助10
2秒前
魅力小鼠发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
Lxx完成签到,获得积分10
4秒前
yao完成签到,获得积分10
4秒前
1111发布了新的文献求助10
4秒前
5秒前
红绿灯的黄完成签到,获得积分10
5秒前
5秒前
共享精神应助樟脑丸采纳,获得10
5秒前
6秒前
6秒前
小嘉贞发布了新的文献求助10
7秒前
7秒前
hou发布了新的文献求助30
7秒前
7秒前
8秒前
Cyrus2022完成签到,获得积分10
8秒前
li发布了新的文献求助10
9秒前
鱼羊完成签到,获得积分10
9秒前
9秒前
NexusExplorer应助方圆几里采纳,获得10
9秒前
Choo发布了新的文献求助10
9秒前
调研昵称发布了新的文献求助10
9秒前
舒心数据线完成签到,获得积分10
10秒前
瘦瘦冰枫发布了新的文献求助30
10秒前
Lucas应助星晴遇见花海采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540424
求助须知:如何正确求助?哪些是违规求助? 3117819
关于积分的说明 9332524
捐赠科研通 2815586
什么是DOI,文献DOI怎么找? 1547670
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445