H-Net: Heterogeneous Neural Network for Multi-Classification of Neuropsychiatric Disorders

计算机科学 人工智能 模式识别(心理学) 人工神经网络 编码器 支持向量机 功能磁共振成像 模态(人机交互) 二元分类 机器学习 医学 放射科 操作系统
作者
Liangliang Liu,Jinpu Xie,Jing Chang,Zhihong Liu,Tong Sun,Hongbo Qiao,Gongbo Liang,Wei Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5509-5518
标识
DOI:10.1109/jbhi.2024.3405941
摘要

Clinical studies have proved that both structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are implicitly associated with neuropsychiatric disorders (NDs), and integrating multi-modal to the binary classification of NDs has been thoroughly explored. However, accurately classifying multiple classes of NDs remains a challenge due to the complexity of disease subclass. In our study, we develop a heterogeneous neural network (H-Net) that integrates sMRI and fMRI modes for classifying multi-class NDs. To account for the differences between the two modes, H-Net adopts a heterogeneous neural network strategy to extract information from each mode. Specifically, H-Net includes an multi-layer perceptron based (MLP-based) encoder, a graph attention network based (GAT-based) encoder, and a cross-modality transformer block. The MLP-based and GAT-based encoders extract semantic features from sMRI and features from fMRI, respectively, while the cross-modality transformer block models the attention of two types of features. In H-Net, the proposed MLP-mixer block and cross-modality alignment are powerful tools for improving the multi-classification performance of NDs. H-Net is validate on the public dataset (CNP), where H-Net achieves 90% classification accuracy in diagnosing multi-class NDs. Furthermore, we demonstrate the complementarity of the two MRI modalities in improving the identification of multi-class NDs. Both visual and statistical analyses show the differences between ND subclasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
今后应助调皮小蘑菇采纳,获得10
刚刚
1秒前
负责的花瓣完成签到,获得积分10
1秒前
宋宋发布了新的文献求助10
2秒前
暮雨完成签到,获得积分10
2秒前
白鱼neko完成签到 ,获得积分10
2秒前
心想事成发布了新的文献求助10
3秒前
SOBER刘晗发布了新的文献求助10
3秒前
爆米花应助爱你不商量采纳,获得10
3秒前
3秒前
林林林一完成签到,获得积分10
3秒前
ZunyeLiu完成签到,获得积分10
3秒前
tvt完成签到,获得积分20
3秒前
炙热芷蕊完成签到,获得积分10
5秒前
5秒前
北栀发布了新的文献求助10
5秒前
芝麻配海带完成签到,获得积分10
5秒前
6秒前
丘比特应助青山采纳,获得10
6秒前
sunrise发布了新的文献求助10
6秒前
深情安青应助清新的剑心采纳,获得10
7秒前
科目三应助cloudup233采纳,获得10
7秒前
7秒前
yang发布了新的文献求助10
8秒前
时光里发布了新的文献求助10
8秒前
tvt发布了新的文献求助10
8秒前
万能图书馆应助夏夜晚风采纳,获得10
8秒前
milagu完成签到,获得积分10
9秒前
兔子应助XH采纳,获得10
9秒前
10秒前
10秒前
10秒前
懒人完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
顾矜应助Eileen采纳,获得10
12秒前
香蕉尔容完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462