H-Net: Heterogeneous Neural Network for Multi-Classification of Neuropsychiatric Disorders

计算机科学 人工智能 模式识别(心理学) 人工神经网络 编码器 支持向量机 功能磁共振成像 模态(人机交互) 二元分类 机器学习 医学 操作系统 放射科
作者
Liangliang Liu,Jinpu Xie,Jing Chang,Zhihong Liu,Tong Sun,Hongbo Qiao,Gongbo Liang,Wei Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5509-5518
标识
DOI:10.1109/jbhi.2024.3405941
摘要

Clinical studies have proved that both structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are implicitly associated with neuropsychiatric disorders (NDs), and integrating multi-modal to the binary classification of NDs has been thoroughly explored. However, accurately classifying multiple classes of NDs remains a challenge due to the complexity of disease subclass. In our study, we develop a heterogeneous neural network (H-Net) that integrates sMRI and fMRI modes for classifying multi-class NDs. To account for the differences between the two modes, H-Net adopts a heterogeneous neural network strategy to extract information from each mode. Specifically, H-Net includes an multi-layer perceptron based (MLP-based) encoder, a graph attention network based (GAT-based) encoder, and a cross-modality transformer block. The MLP-based and GAT-based encoders extract semantic features from sMRI and features from fMRI, respectively, while the cross-modality transformer block models the attention of two types of features. In H-Net, the proposed MLP-mixer block and cross-modality alignment are powerful tools for improving the multi-classification performance of NDs. H-Net is validate on the public dataset (CNP), where H-Net achieves 90% classification accuracy in diagnosing multi-class NDs. Furthermore, we demonstrate the complementarity of the two MRI modalities in improving the identification of multi-class NDs. Both visual and statistical analyses show the differences between ND subclasses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卉不卉发布了新的文献求助10
2秒前
jkaaa完成签到,获得积分10
3秒前
jenningseastera应助WQ采纳,获得10
8秒前
underway发布了新的文献求助10
11秒前
xinqianying完成签到 ,获得积分10
13秒前
WQ完成签到,获得积分20
16秒前
协和_子鱼完成签到,获得积分10
18秒前
20秒前
苦行僧完成签到 ,获得积分10
25秒前
英俊的铭应助feng采纳,获得10
26秒前
36秒前
xiaoyi完成签到 ,获得积分10
37秒前
馅饼完成签到,获得积分10
38秒前
40秒前
40秒前
feng发布了新的文献求助10
44秒前
Lorain完成签到,获得积分20
46秒前
wmy发布了新的文献求助10
47秒前
where完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
Titi完成签到 ,获得积分10
1分钟前
where发布了新的文献求助10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
杨yang完成签到 ,获得积分10
1分钟前
不想洗碗完成签到 ,获得积分10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
王海海完成签到 ,获得积分10
1分钟前
1分钟前
香香丿完成签到 ,获得积分10
1分钟前
rgjipeng完成签到,获得积分10
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
LUCKY完成签到 ,获得积分10
1分钟前
布蓝图完成签到 ,获得积分10
1分钟前
贪玩的网络完成签到 ,获得积分10
1分钟前
西瓜霜完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分10
1分钟前
1分钟前
花誓lydia完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251