SVulDetector: Vulnerability detection based on similarity using tree-based attention and weighted graph embedding mechanisms

计算机科学 脆弱性(计算) 编码(集合论) 图形 钥匙(锁) 嵌入 图嵌入 数据挖掘 理论计算机科学 人工智能 计算机安全 程序设计语言 集合(抽象数据类型)
作者
Weining Zheng,Xiaohong Su,Hongwei Wei,Wenxin Tao
出处
期刊:Computers & Security [Elsevier]
卷期号:144: 103930-103930
标识
DOI:10.1016/j.cose.2024.103930
摘要

Vulnerability detection by comparing similarities with known vulnerable code is an important method for improving code security, and is particularly effective in detecting vulnerabilities caused by code reuse. However, vulnerability detection is made difficult by the existence of some different and vulnerability-unrelated statements between codes with the same vulnerability pattern, as well as the small differences between vulnerable and fixed non-vulnerable codes. To address these challenges, we believe that more attention needs to be paid to some core syntactic and semantic information about vulnerabilities, which can help models more accurately identify vulnerable code. Hence, we propose a novel code-similarity-based vulnerability detection approach named SVulDetector. First, it contains a new code representation, called Sliced Composite Graphs (SCGs), which can represent rich syntactic and semantic information related to vulnerable statements while minimizing the interference from similar vulnerability irrelevant information as much as possible. Next, a tree-based attention mechanism is used to highlight certain key syntactic information in vulnerable code and fixed non-vulnerable code. Finally, SVulDetector highlights key vulnerable node information in the graph-based code representation via a weighted graph embedding mechanism. We extensively evaluated SVulDetector on an improved real-world dataset using both binary classification and multi-class vulnerability detection tasks, and the proposed SVulDetector outperforms existing state-of-the-art detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Always完成签到,获得积分10
刚刚
星辰大海应助Hemingwayway采纳,获得10
1秒前
桐桐应助剑K采纳,获得10
1秒前
逢投必中发布了新的文献求助10
2秒前
charatanfeng发布了新的文献求助10
2秒前
汉堡包应助魔幻问薇采纳,获得10
4秒前
6秒前
6秒前
Hemingwayway完成签到,获得积分10
6秒前
orixero应助徐矜采纳,获得10
6秒前
7秒前
8秒前
啦啦啦完成签到,获得积分20
9秒前
www发布了新的文献求助10
10秒前
快乐小狗发布了新的文献求助10
10秒前
11秒前
辛勤香岚发布了新的文献求助10
11秒前
挪威的森林完成签到,获得积分10
11秒前
加油完成签到 ,获得积分10
14秒前
dddd完成签到,获得积分10
15秒前
16秒前
赵赵a应助美美熊采纳,获得20
17秒前
打打应助懒癌晚期采纳,获得10
17秒前
只道寻常完成签到 ,获得积分10
17秒前
roumaoliang完成签到,获得积分10
18秒前
18秒前
zyc发布了新的文献求助10
19秒前
魔幻问薇发布了新的文献求助10
21秒前
21秒前
快乐小狗完成签到,获得积分20
21秒前
Iris完成签到,获得积分10
24秒前
sedrakyan完成签到,获得积分10
25秒前
JamesPei应助多和5的武器采纳,获得10
26秒前
白介素-11发布了新的文献求助10
27秒前
无情的问枫完成签到,获得积分10
29秒前
the兰发布了新的文献求助10
29秒前
点点白帆发布了新的文献求助10
29秒前
孙熙源完成签到,获得积分20
29秒前
柚子完成签到 ,获得积分10
29秒前
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919