Predicting red blood cell traffcking and capillary hemodynamics in angiogenic and tumor microcirculation in silico

微循环 生物信息学 血流动力学 红细胞 血细胞 毛细血管 生物 毛细管作用 肿瘤细胞 化学 细胞生物学 内科学 癌症研究 医学 内分泌学 生物化学 免疫学 循环系统 材料科学 基因 复合材料
作者
Abhay Mohan,Prosenjit Bagchi
出处
期刊:Physiology [American Physiological Society]
卷期号:39 (S1)
标识
DOI:10.1152/physiol.2024.39.s1.1318
摘要

Objective: Angiogenic and tumor microvasculatures are known to have abnormal topology due to the presence of frequent vessel junctions, irregular and deflated blood vessels, multi-furcations, and tessellated vessel organization. Although recent advances in imaging techniques in vivo have enabled mapping such vasculatures at high spatial resolution, simultaneous measurements of hemodynamic parameters, such as the wall shear stress (WSS) with full 3D details, remain a challenge. Theoretical network flow models, often used for hemodynamic predictions in such experimentally acquired images, cannot provide the full 3D hemodynamic details either, as these models treat each blood vessel as 1D segment and do not explicitly model red blood cells (RBCs). To overcome this limitation, we have developed a high-fidelity, 3D Computational Fluid Dynamics modeling to predict the flow of a large number of deformable RBCs through physiologically realistic tumor/angiogenic microvascular networks in silico. Methods: We use in vivo images to create such vascular networks in silico and then predict RBC traffcking and capillary hemodynamics. Deformation of every flowing RBC is considered with high accuracy, and 3D geometry of each vessel is accurately modeled. Flow is driven by specifying physiological pressure boundary conditions. Model predictions have been validated against in vivo data. This in-house predictive tool is versatile, can be applied to any microvascular network image obtained in vivo in any organ, and can predict trajectories of diverse cell types including leukocytes, platelets and circulating tumor cells, drug and molecular transport in capillary blood, and cell-vessel adhesion. Results: We provide quantitative differences between healthy microvascular networks and tumor/angiogenic networks in terms of RBC distribution, perfusion, and wall shear stress. Our model shows increased heterogeneity in RBC and flow distribution in both tumor and angiogenic vasculatures than the healthy one. Also, we predict reduced flow and hematocrit in several vessels in both tumor and angiogenic vasculatures. Interestingly, several vessels in the angiogenic vasculature are predicted to have higher flow than the healthy one, while most vessels in the tumor vasculature show flow reduction. This in silico prediction is consistent with a recent in vivo study which showed higher flow in peri-tumor region and reduced flow in tumor. We further predict a significant heterogeneity in WSS and WSS gradient, blood velocity profiles, and near-wall RBC-depleted region. Conclusion: In conclusion, we have developed a versatile, in silico model that allows high-fidelity prediction of capillary hemodynamics in tumor microcirculation and provide information on hemodynamic variables that are not readily measurable in vivo but have physiological significance in tumor progression and treatment. NIH (R01EY033003) and NSF (CBET1804591). This is the full abstract presented at the American Physiology Summit 2024 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的哈密瓜完成签到 ,获得积分10
刚刚
一个左正蹬完成签到,获得积分10
刚刚
像风完成签到,获得积分10
1秒前
啊凡完成签到 ,获得积分10
3秒前
ZONG完成签到,获得积分20
4秒前
温暖完成签到 ,获得积分10
5秒前
niugade发布了新的文献求助10
7秒前
gao高完成签到,获得积分10
8秒前
春分夏至完成签到,获得积分10
9秒前
慢慢地漫漫完成签到,获得积分10
9秒前
张文博完成签到,获得积分10
10秒前
DDX完成签到 ,获得积分10
13秒前
戈戈唔完成签到 ,获得积分10
13秒前
15秒前
研友_8y2G0L发布了新的文献求助20
16秒前
cc完成签到 ,获得积分10
17秒前
3194953964完成签到 ,获得积分10
18秒前
Polymer72应助结实的哈密瓜采纳,获得30
21秒前
ymr完成签到 ,获得积分10
23秒前
zhugao完成签到,获得积分10
24秒前
么一嗷喵完成签到,获得积分10
24秒前
呆萌的金针菇完成签到 ,获得积分10
27秒前
xiaobai完成签到,获得积分20
27秒前
guoxingliu完成签到,获得积分10
28秒前
cnspower应助石莫言采纳,获得100
29秒前
jyjy完成签到,获得积分10
29秒前
sdbz001完成签到,获得积分10
30秒前
xiaobai发布了新的文献求助10
31秒前
勤奋的如松完成签到,获得积分10
33秒前
踏雪飞鸿完成签到,获得积分10
37秒前
xiaohongmao完成签到,获得积分10
39秒前
Polymer72应助科研通管家采纳,获得20
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
xiongqi完成签到 ,获得积分10
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
41秒前
思源应助科研通管家采纳,获得10
41秒前
41秒前
高高的天亦完成签到 ,获得积分10
42秒前
WittingGU完成签到,获得积分0
44秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628183
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180