亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting red blood cell traffcking and capillary hemodynamics in angiogenic and tumor microcirculation in silico

微循环 生物信息学 血流动力学 红细胞 血细胞 毛细血管 生物 毛细管作用 肿瘤细胞 化学 细胞生物学 内科学 癌症研究 医学 内分泌学 生物化学 免疫学 循环系统 材料科学 基因 复合材料
作者
Abhay Mohan,Prosenjit Bagchi
出处
期刊:Physiology [American Physiological Society]
卷期号:39 (S1)
标识
DOI:10.1152/physiol.2024.39.s1.1318
摘要

Objective: Angiogenic and tumor microvasculatures are known to have abnormal topology due to the presence of frequent vessel junctions, irregular and deflated blood vessels, multi-furcations, and tessellated vessel organization. Although recent advances in imaging techniques in vivo have enabled mapping such vasculatures at high spatial resolution, simultaneous measurements of hemodynamic parameters, such as the wall shear stress (WSS) with full 3D details, remain a challenge. Theoretical network flow models, often used for hemodynamic predictions in such experimentally acquired images, cannot provide the full 3D hemodynamic details either, as these models treat each blood vessel as 1D segment and do not explicitly model red blood cells (RBCs). To overcome this limitation, we have developed a high-fidelity, 3D Computational Fluid Dynamics modeling to predict the flow of a large number of deformable RBCs through physiologically realistic tumor/angiogenic microvascular networks in silico. Methods: We use in vivo images to create such vascular networks in silico and then predict RBC traffcking and capillary hemodynamics. Deformation of every flowing RBC is considered with high accuracy, and 3D geometry of each vessel is accurately modeled. Flow is driven by specifying physiological pressure boundary conditions. Model predictions have been validated against in vivo data. This in-house predictive tool is versatile, can be applied to any microvascular network image obtained in vivo in any organ, and can predict trajectories of diverse cell types including leukocytes, platelets and circulating tumor cells, drug and molecular transport in capillary blood, and cell-vessel adhesion. Results: We provide quantitative differences between healthy microvascular networks and tumor/angiogenic networks in terms of RBC distribution, perfusion, and wall shear stress. Our model shows increased heterogeneity in RBC and flow distribution in both tumor and angiogenic vasculatures than the healthy one. Also, we predict reduced flow and hematocrit in several vessels in both tumor and angiogenic vasculatures. Interestingly, several vessels in the angiogenic vasculature are predicted to have higher flow than the healthy one, while most vessels in the tumor vasculature show flow reduction. This in silico prediction is consistent with a recent in vivo study which showed higher flow in peri-tumor region and reduced flow in tumor. We further predict a significant heterogeneity in WSS and WSS gradient, blood velocity profiles, and near-wall RBC-depleted region. Conclusion: In conclusion, we have developed a versatile, in silico model that allows high-fidelity prediction of capillary hemodynamics in tumor microcirculation and provide information on hemodynamic variables that are not readily measurable in vivo but have physiological significance in tumor progression and treatment. NIH (R01EY033003) and NSF (CBET1804591). This is the full abstract presented at the American Physiology Summit 2024 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jueshadi发布了新的文献求助10
2秒前
打打应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
hengistdeng完成签到,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
10秒前
14秒前
koman发布了新的文献求助10
15秒前
云霞完成签到 ,获得积分10
16秒前
17秒前
沁沁沁发布了新的文献求助10
19秒前
ceeray23发布了新的文献求助20
20秒前
koman完成签到,获得积分20
22秒前
yx_cheng完成签到,获得积分0
22秒前
安详初蓝完成签到 ,获得积分10
26秒前
彩色映雁完成签到 ,获得积分10
26秒前
小松鼠完成签到 ,获得积分10
32秒前
GingerF应助Peng采纳,获得50
38秒前
小二郎应助nhh采纳,获得10
43秒前
Peng完成签到,获得积分10
46秒前
sheldoo完成签到 ,获得积分10
50秒前
52秒前
Marshall完成签到 ,获得积分10
55秒前
nhh发布了新的文献求助10
56秒前
kyfbrahha完成签到 ,获得积分10
56秒前
枫于林完成签到 ,获得积分10
59秒前
jueshadi发布了新的文献求助10
1分钟前
李健应助YDX采纳,获得10
1分钟前
搜集达人应助ceeray23采纳,获得20
1分钟前
哟嚛完成签到,获得积分10
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
1分钟前
lizibelle发布了新的文献求助10
1分钟前
NexusExplorer应助行素采纳,获得10
1分钟前
1分钟前
小吴发布了新的文献求助10
1分钟前
1分钟前
行素发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762