Predicting red blood cell traffcking and capillary hemodynamics in angiogenic and tumor microcirculation in silico

微循环 生物信息学 血流动力学 红细胞 血细胞 毛细血管 生物 毛细管作用 肿瘤细胞 化学 细胞生物学 内科学 癌症研究 医学 内分泌学 生物化学 免疫学 循环系统 材料科学 基因 复合材料
作者
Abhay Mohan,Prosenjit Bagchi
出处
期刊:Physiology [American Physiological Society]
卷期号:39 (S1)
标识
DOI:10.1152/physiol.2024.39.s1.1318
摘要

Objective: Angiogenic and tumor microvasculatures are known to have abnormal topology due to the presence of frequent vessel junctions, irregular and deflated blood vessels, multi-furcations, and tessellated vessel organization. Although recent advances in imaging techniques in vivo have enabled mapping such vasculatures at high spatial resolution, simultaneous measurements of hemodynamic parameters, such as the wall shear stress (WSS) with full 3D details, remain a challenge. Theoretical network flow models, often used for hemodynamic predictions in such experimentally acquired images, cannot provide the full 3D hemodynamic details either, as these models treat each blood vessel as 1D segment and do not explicitly model red blood cells (RBCs). To overcome this limitation, we have developed a high-fidelity, 3D Computational Fluid Dynamics modeling to predict the flow of a large number of deformable RBCs through physiologically realistic tumor/angiogenic microvascular networks in silico. Methods: We use in vivo images to create such vascular networks in silico and then predict RBC traffcking and capillary hemodynamics. Deformation of every flowing RBC is considered with high accuracy, and 3D geometry of each vessel is accurately modeled. Flow is driven by specifying physiological pressure boundary conditions. Model predictions have been validated against in vivo data. This in-house predictive tool is versatile, can be applied to any microvascular network image obtained in vivo in any organ, and can predict trajectories of diverse cell types including leukocytes, platelets and circulating tumor cells, drug and molecular transport in capillary blood, and cell-vessel adhesion. Results: We provide quantitative differences between healthy microvascular networks and tumor/angiogenic networks in terms of RBC distribution, perfusion, and wall shear stress. Our model shows increased heterogeneity in RBC and flow distribution in both tumor and angiogenic vasculatures than the healthy one. Also, we predict reduced flow and hematocrit in several vessels in both tumor and angiogenic vasculatures. Interestingly, several vessels in the angiogenic vasculature are predicted to have higher flow than the healthy one, while most vessels in the tumor vasculature show flow reduction. This in silico prediction is consistent with a recent in vivo study which showed higher flow in peri-tumor region and reduced flow in tumor. We further predict a significant heterogeneity in WSS and WSS gradient, blood velocity profiles, and near-wall RBC-depleted region. Conclusion: In conclusion, we have developed a versatile, in silico model that allows high-fidelity prediction of capillary hemodynamics in tumor microcirculation and provide information on hemodynamic variables that are not readily measurable in vivo but have physiological significance in tumor progression and treatment. NIH (R01EY033003) and NSF (CBET1804591). This is the full abstract presented at the American Physiology Summit 2024 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助小D采纳,获得30
刚刚
yuan发布了新的文献求助10
刚刚
berry发布了新的文献求助10
1秒前
1秒前
淡淡采白发布了新的文献求助10
2秒前
思源应助勤恳慕蕊采纳,获得10
2秒前
知犯何逆完成签到 ,获得积分10
3秒前
啊哈完成签到,获得积分10
3秒前
4秒前
4秒前
Draven完成签到 ,获得积分10
4秒前
tmpstlml发布了新的文献求助10
5秒前
张红梨完成签到,获得积分10
5秒前
迷迷完成签到,获得积分20
6秒前
6秒前
科研通AI2S应助chen采纳,获得10
7秒前
穿山甲坐飞机完成签到 ,获得积分10
7秒前
8秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
8秒前
科研通AI5应助经年采纳,获得10
8秒前
8秒前
勤劳晓亦应助木头人采纳,获得10
9秒前
科研通AI5应助想瘦的海豹采纳,获得10
9秒前
10秒前
科研通AI5应助adazbd采纳,获得10
10秒前
bkagyin应助皮皮桂采纳,获得10
10秒前
11秒前
重要的哈密瓜完成签到 ,获得积分10
11秒前
会飞的云完成签到 ,获得积分10
12秒前
12秒前
毕不了业的凡阿哥完成签到,获得积分10
12秒前
野子发布了新的文献求助10
12秒前
berry完成签到,获得积分10
13秒前
14秒前
LUNWENREQUEST发布了新的文献求助10
14秒前
大模型应助匹诺曹采纳,获得10
15秒前
ding应助过时的又槐采纳,获得10
16秒前
19秒前
鄙视注册完成签到,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808