亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting red blood cell traffcking and capillary hemodynamics in angiogenic and tumor microcirculation in silico

微循环 生物信息学 血流动力学 红细胞 血细胞 毛细血管 生物 毛细管作用 肿瘤细胞 化学 细胞生物学 内科学 癌症研究 医学 内分泌学 生物化学 免疫学 循环系统 材料科学 基因 复合材料
作者
Abhay Mohan,Prosenjit Bagchi
出处
期刊:Physiology [American Physiological Society]
卷期号:39 (S1)
标识
DOI:10.1152/physiol.2024.39.s1.1318
摘要

Objective: Angiogenic and tumor microvasculatures are known to have abnormal topology due to the presence of frequent vessel junctions, irregular and deflated blood vessels, multi-furcations, and tessellated vessel organization. Although recent advances in imaging techniques in vivo have enabled mapping such vasculatures at high spatial resolution, simultaneous measurements of hemodynamic parameters, such as the wall shear stress (WSS) with full 3D details, remain a challenge. Theoretical network flow models, often used for hemodynamic predictions in such experimentally acquired images, cannot provide the full 3D hemodynamic details either, as these models treat each blood vessel as 1D segment and do not explicitly model red blood cells (RBCs). To overcome this limitation, we have developed a high-fidelity, 3D Computational Fluid Dynamics modeling to predict the flow of a large number of deformable RBCs through physiologically realistic tumor/angiogenic microvascular networks in silico. Methods: We use in vivo images to create such vascular networks in silico and then predict RBC traffcking and capillary hemodynamics. Deformation of every flowing RBC is considered with high accuracy, and 3D geometry of each vessel is accurately modeled. Flow is driven by specifying physiological pressure boundary conditions. Model predictions have been validated against in vivo data. This in-house predictive tool is versatile, can be applied to any microvascular network image obtained in vivo in any organ, and can predict trajectories of diverse cell types including leukocytes, platelets and circulating tumor cells, drug and molecular transport in capillary blood, and cell-vessel adhesion. Results: We provide quantitative differences between healthy microvascular networks and tumor/angiogenic networks in terms of RBC distribution, perfusion, and wall shear stress. Our model shows increased heterogeneity in RBC and flow distribution in both tumor and angiogenic vasculatures than the healthy one. Also, we predict reduced flow and hematocrit in several vessels in both tumor and angiogenic vasculatures. Interestingly, several vessels in the angiogenic vasculature are predicted to have higher flow than the healthy one, while most vessels in the tumor vasculature show flow reduction. This in silico prediction is consistent with a recent in vivo study which showed higher flow in peri-tumor region and reduced flow in tumor. We further predict a significant heterogeneity in WSS and WSS gradient, blood velocity profiles, and near-wall RBC-depleted region. Conclusion: In conclusion, we have developed a versatile, in silico model that allows high-fidelity prediction of capillary hemodynamics in tumor microcirculation and provide information on hemodynamic variables that are not readily measurable in vivo but have physiological significance in tumor progression and treatment. NIH (R01EY033003) and NSF (CBET1804591). This is the full abstract presented at the American Physiology Summit 2024 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MT完成签到,获得积分20
7秒前
27秒前
28秒前
孙文远发布了新的文献求助10
30秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
toutou应助科研通管家采纳,获得10
49秒前
无花果应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
纳米大亨完成签到,获得积分10
51秒前
hlq完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助老不靠谱采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
老不靠谱发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
toutou应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
ztl完成签到 ,获得积分10
2分钟前
2分钟前
隐形曼青应助lllll采纳,获得10
2分钟前
3分钟前
不器完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423