外渗
纳米医学
渗透(战争)
曲率
药物输送
纳米颗粒
生物物理学
纳米技术
材料科学
化学
生物医学工程
医学
病理
生物
几何学
数学
运筹学
工程类
作者
Xiaohe Jiang,Sai Xu,Yunqiu Miao,Kang Huang,Bingqi Wang,Bingwen Ding,Zhuan Zhang,Zitong Zhao,Xinxin Zhang,Xinghua Shi,Miaorong Yu,Falin Tian,Yong Gan
标识
DOI:10.1073/pnas.2319880121
摘要
Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI