亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery

外渗 纳米医学 渗透(战争) 曲率 药物输送 纳米颗粒 生物物理学 纳米技术 材料科学 化学 生物医学工程 医学 病理 生物 几何学 工程类 运筹学 数学
作者
Xiaohe Jiang,Sai Xu,Yunqiu Miao,Kang Huang,Bingqi Wang,Bingwen Ding,Zhuan Zhang,Zitong Zhao,Xinxin Zhang,Xinghua Shi,Miaorong Yu,Falin Tian,Yong Gan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (22): e2319880121-e2319880121 被引量:18
标识
DOI:10.1073/pnas.2319880121
摘要

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左传琦完成签到 ,获得积分10
刚刚
NOTHING完成签到 ,获得积分10
6秒前
7秒前
吞吞完成签到 ,获得积分10
8秒前
慧灰huihui发布了新的文献求助10
12秒前
12秒前
ceeray23发布了新的文献求助20
17秒前
英俊的铭应助慧灰huihui采纳,获得10
18秒前
Jy完成签到 ,获得积分10
48秒前
curtain完成签到,获得积分10
50秒前
清飏应助karstbing采纳,获得220
56秒前
田様应助Y123采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Y123发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助Y123采纳,获得10
1分钟前
平淡如天完成签到,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
yishujia完成签到,获得积分20
1分钟前
April发布了新的文献求助10
1分钟前
脱锦涛完成签到 ,获得积分10
1分钟前
汉堡包应助勤劳影子采纳,获得10
1分钟前
April完成签到,获得积分10
1分钟前
2分钟前
2分钟前
越听初发布了新的文献求助10
2分钟前
JamesPei应助阔达的凝丝采纳,获得10
2分钟前
研友_LX62KZ发布了新的文献求助10
2分钟前
Tumumu完成签到,获得积分0
2分钟前
2分钟前
阔达的凝丝给阔达的凝丝的求助进行了留言
2分钟前
犬来八荒发布了新的文献求助10
2分钟前
温暖大米完成签到 ,获得积分0
2分钟前
越听初完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023