Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery

外渗 纳米医学 渗透(战争) 曲率 药物输送 纳米颗粒 生物物理学 纳米技术 材料科学 化学 生物医学工程 医学 病理 生物 几何学 数学 运筹学 工程类
作者
Xiaohe Jiang,Sai Xu,Yunqiu Miao,Kang Huang,Bingqi Wang,Bingwen Ding,Zhuan Zhang,Zitong Zhao,Xinxin Zhang,Xinghua Shi,Miaorong Yu,Falin Tian,Yong Gan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (22)
标识
DOI:10.1073/pnas.2319880121
摘要

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助33采纳,获得10
刚刚
1秒前
fixit完成签到,获得积分10
1秒前
keeee完成签到 ,获得积分10
1秒前
1秒前
2秒前
Riggle G发布了新的文献求助10
3秒前
3秒前
姜惠发布了新的文献求助10
4秒前
5秒前
魁梧的火龙果完成签到,获得积分10
5秒前
九九完成签到 ,获得积分10
5秒前
啦啦咔嘞完成签到,获得积分10
5秒前
会科研发布了新的文献求助10
6秒前
6秒前
灯塔水母发布了新的文献求助10
7秒前
7秒前
Yeyuntian完成签到 ,获得积分10
7秒前
wangxiaoyating完成签到,获得积分10
7秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
8秒前
slin_sjtu完成签到,获得积分10
8秒前
小小小肥鸡完成签到,获得积分10
8秒前
Wuxia111发布了新的文献求助10
9秒前
9秒前
谢昱完成签到,获得积分10
10秒前
10秒前
wgg完成签到,获得积分10
10秒前
潇洒完成签到,获得积分10
11秒前
白菜完成签到,获得积分10
12秒前
清风徐来完成签到,获得积分10
12秒前
丶丶发布了新的文献求助10
12秒前
天真飞绿完成签到,获得积分10
13秒前
13秒前
云轩完成签到,获得积分10
14秒前
叶舟完成签到,获得积分10
14秒前
14秒前
14秒前
zhangwj226完成签到,获得积分10
14秒前
搞怪的又蓝应助星点点采纳,获得10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051