SemiRS-COC: Semi-Supervised Classification for Complex Remote Sensing Scenes With Cross-Object Consistency

人工智能 计算机科学 班级(哲学) 相似性(几何) 计算机视觉 模式识别(心理学) 一致性(知识库) 对象(语法) 特征(语言学) 注释 特征提取 目标检测 图像(数学) 语言学 哲学
作者
Qiang Liu,Jun Yue,Yang Kuang,Weiying Xie,Leyuan Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3855-3870 被引量:7
标识
DOI:10.1109/tip.2024.3414122
摘要

Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generating pseudo-labels for unlabeled data based on image-level predictions. However, complex remote sensing (RS) scene images frequently encounter challenges, such as interference from multiple background objects and significant intra-class differences, resulting in unreliable pseudo-labels. In this paper, we propose the SemiRS-COC, a novel semi-supervised classification method for complex RS scenes. Inspired by the idea that neighboring objects in feature space should share consistent semantic labels, SemiRS-COC utilizes the similarity between foreground objects in RS images to generate reliable object-level pseudo-labels, effectively addressing the issues of multiple background objects and significant intra-class differences in complex RS images. Specifically, we first design a Local Self-Learning Object Perception (LSLOP) mechanism, which transforms multiple background objects interference of RS images into usable annotation information, enhancing the model's object perception capability. Furthermore, we present a Cross-Object Consistency Pseudo-Labeling (COCPL) strategy, which generates reliable object-level pseudo-labels by comparing the similarity of foreground objects across different RS images, effectively handling significant intra-class differences. Extensive experiments demonstrate that our proposed method achieves excellent performance compared to state-of-the-art methods on three widely-adopted RS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞鸿影下完成签到 ,获得积分10
刚刚
ding应助白水采纳,获得10
刚刚
Yvan完成签到,获得积分10
刚刚
1秒前
喵喵完成签到 ,获得积分10
1秒前
云草发布了新的文献求助10
1秒前
yanchen完成签到,获得积分10
3秒前
guozizi发布了新的文献求助30
3秒前
在水一方应助火羊宝采纳,获得10
3秒前
Fayth发布了新的文献求助10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
一期一会完成签到,获得积分10
4秒前
思源应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
newma完成签到,获得积分10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
5秒前
奇犽请爱我完成签到,获得积分10
5秒前
李健应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
percy发布了新的文献求助10
5秒前
啊桂发布了新的文献求助10
5秒前
5秒前
yueyue完成签到,获得积分10
5秒前
6秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517