SemiRS-COC: Semi-Supervised Classification for Complex Remote Sensing Scenes With Cross-Object Consistency

人工智能 计算机科学 班级(哲学) 相似性(几何) 计算机视觉 模式识别(心理学) 一致性(知识库) 对象(语法) 特征(语言学) 注释 特征提取 目标检测 图像(数学) 语言学 哲学
作者
Qiang Liu,Jun Yue,Yang Kuang,Weiying Xie,Leyuan Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3855-3870 被引量:7
标识
DOI:10.1109/tip.2024.3414122
摘要

Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generating pseudo-labels for unlabeled data based on image-level predictions. However, complex remote sensing (RS) scene images frequently encounter challenges, such as interference from multiple background objects and significant intra-class differences, resulting in unreliable pseudo-labels. In this paper, we propose the SemiRS-COC, a novel semi-supervised classification method for complex RS scenes. Inspired by the idea that neighboring objects in feature space should share consistent semantic labels, SemiRS-COC utilizes the similarity between foreground objects in RS images to generate reliable object-level pseudo-labels, effectively addressing the issues of multiple background objects and significant intra-class differences in complex RS images. Specifically, we first design a Local Self-Learning Object Perception (LSLOP) mechanism, which transforms multiple background objects interference of RS images into usable annotation information, enhancing the model's object perception capability. Furthermore, we present a Cross-Object Consistency Pseudo-Labeling (COCPL) strategy, which generates reliable object-level pseudo-labels by comparing the similarity of foreground objects across different RS images, effectively handling significant intra-class differences. Extensive experiments demonstrate that our proposed method achieves excellent performance compared to state-of-the-art methods on three widely-adopted RS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbhsjk完成签到,获得积分10
1秒前
2秒前
武雨寒发布了新的文献求助10
2秒前
数学情缘完成签到,获得积分10
2秒前
Emi完成签到 ,获得积分10
2秒前
SciGPT应助山水之乐采纳,获得10
3秒前
在水一方应助mont采纳,获得10
3秒前
3秒前
Criminology34应助左西采纳,获得10
4秒前
4秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
5秒前
happyday发布了新的文献求助10
8秒前
9秒前
芃芃完成签到 ,获得积分10
11秒前
12秒前
诺诺完成签到 ,获得积分10
15秒前
16秒前
aaaa完成签到 ,获得积分10
17秒前
mont完成签到,获得积分10
18秒前
18秒前
123456789完成签到 ,获得积分10
18秒前
18秒前
21秒前
杨震发布了新的文献求助10
21秒前
22秒前
mont发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
科研通AI6应助柔弱的芷珍采纳,获得10
25秒前
26秒前
26秒前
暗中讨饭发布了新的文献求助10
26秒前
26秒前
chao发布了新的文献求助10
27秒前
晶婷发布了新的文献求助10
28秒前
杨震完成签到,获得积分10
30秒前
大方蜡烛发布了新的文献求助10
30秒前
奋斗青发布了新的文献求助10
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439