SemiRS-COC: Semi-Supervised Classification for Complex Remote Sensing Scenes with Cross-Object Consistency

人工智能 计算机科学 计算机视觉 模式识别(心理学) 一致性(知识库) 对象(语法) 上下文图像分类 目标检测 图像(数学)
作者
Qiang Liu,Jun Yue,Kehu Yang,Weiying Xie,Leyuan Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3414122
摘要

Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generating pseudo-labels for unlabeled data based on image-level predictions. However, complex remote sensing (RS) scene images frequently encounter challenges, such as interference from multiple background objects and significant intra-class differences, resulting in unreliable pseudo-labels. In this paper, we propose the SemiRS-COC, a novel semi-supervised classification method for complex RS scenes. Inspired by the idea that neighboring objects in feature space should share consistent semantic labels, SemiRS-COC utilizes the similarity between foreground objects in RS images to generate reliable object-level pseudo-labels, effectively addressing the issues of multiple background objects and significant intra-class differences in complex RS images. Specifically, we first design a Local Self-Learning Object Perception (LSLOP) mechanism, which transforms multiple background objects interference of RS images into usable annotation information, enhancing the model's object perception capability. Furthermore, we present a Cross-Object Consistency Pseudo-Labeling (COCPL) strategy, which generates reliable object-level pseudo-labels by comparing the similarity of foreground objects across different RS images, effectively handling significant intra-class differences. Extensive experiments demonstrate that our proposed method achieves excellent performance compared to state-of-the-art methods on three widely-adopted RS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huahua完成签到,获得积分10
刚刚
1秒前
1秒前
燃烧的火柴完成签到,获得积分10
1秒前
所所应助xl采纳,获得10
2秒前
4秒前
huahua发布了新的文献求助10
4秒前
kkkk发布了新的文献求助10
6秒前
HXL完成签到 ,获得积分10
6秒前
舍得完成签到,获得积分10
7秒前
yy完成签到 ,获得积分10
9秒前
万能图书馆应助唐瑾瑜采纳,获得10
9秒前
weiyy完成签到 ,获得积分10
10秒前
YYY666发布了新的文献求助10
12秒前
12秒前
zho关闭了zho文献求助
13秒前
16秒前
Ava应助doc采纳,获得50
17秒前
我是你爹完成签到,获得积分10
19秒前
xl发布了新的文献求助10
20秒前
20秒前
Siliconeoil应助饵丝拌辣酱采纳,获得10
21秒前
sugar完成签到,获得积分10
23秒前
宋泽艺完成签到 ,获得积分10
23秒前
Lyw完成签到 ,获得积分10
25秒前
算命的完成签到,获得积分10
25秒前
abc完成签到 ,获得积分10
25秒前
烟花应助秒秒采纳,获得10
26秒前
one完成签到 ,获得积分10
26秒前
27秒前
玩命的咖啡完成签到,获得积分10
28秒前
replay完成签到,获得积分10
28秒前
29秒前
30秒前
香蕉觅云应助求助采纳,获得10
31秒前
宝宝完成签到,获得积分10
33秒前
师德完成签到,获得积分10
34秒前
34秒前
唐瑾瑜发布了新的文献求助10
34秒前
fzzzzlucy完成签到,获得积分10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242614
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245307
捐赠科研通 2555475
什么是DOI,文献DOI怎么找? 1383508
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625605