SemiRS-COC: Semi-Supervised Classification for Complex Remote Sensing Scenes with Cross-Object Consistency

人工智能 计算机科学 计算机视觉 模式识别(心理学) 一致性(知识库) 对象(语法) 上下文图像分类 目标检测 图像(数学)
作者
Qiang Liu,Jun Yue,Kehu Yang,Weiying Xie,Leyuan Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3414122
摘要

Semi-supervised learning (SSL), which aims to learn with limited labeled data and massive amounts of unlabeled data, offers a promising approach to exploit the massive amounts of satellite Earth observation images. The fundamental concept underlying most state-of-the-art SSL methods involves generating pseudo-labels for unlabeled data based on image-level predictions. However, complex remote sensing (RS) scene images frequently encounter challenges, such as interference from multiple background objects and significant intra-class differences, resulting in unreliable pseudo-labels. In this paper, we propose the SemiRS-COC, a novel semi-supervised classification method for complex RS scenes. Inspired by the idea that neighboring objects in feature space should share consistent semantic labels, SemiRS-COC utilizes the similarity between foreground objects in RS images to generate reliable object-level pseudo-labels, effectively addressing the issues of multiple background objects and significant intra-class differences in complex RS images. Specifically, we first design a Local Self-Learning Object Perception (LSLOP) mechanism, which transforms multiple background objects interference of RS images into usable annotation information, enhancing the model's object perception capability. Furthermore, we present a Cross-Object Consistency Pseudo-Labeling (COCPL) strategy, which generates reliable object-level pseudo-labels by comparing the similarity of foreground objects across different RS images, effectively handling significant intra-class differences. Extensive experiments demonstrate that our proposed method achieves excellent performance compared to state-of-the-art methods on three widely-adopted RS datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Psychexin应助冯世嘉采纳,获得10
刚刚
2秒前
yanhuazi完成签到,获得积分10
2秒前
4秒前
copycat完成签到,获得积分10
4秒前
领导范儿应助bji采纳,获得10
4秒前
4秒前
歇菜完成签到,获得积分10
5秒前
wanci应助穆空采纳,获得10
7秒前
柚子青芒完成签到,获得积分20
9秒前
copycat发布了新的文献求助10
10秒前
刍青完成签到,获得积分10
11秒前
自觉的夏蓉完成签到,获得积分10
11秒前
12秒前
GreyHeron关注了科研通微信公众号
12秒前
xk发布了新的文献求助10
16秒前
18秒前
123发布了新的文献求助10
21秒前
XYZ完成签到 ,获得积分10
23秒前
24秒前
24秒前
111111111111111完成签到,获得积分10
25秒前
28秒前
yyyyy发布了新的文献求助10
29秒前
慕青应助爱撒娇的紫菜采纳,获得10
29秒前
SSS木南发布了新的文献求助10
30秒前
33秒前
33秒前
34秒前
34秒前
36秒前
36秒前
小白发布了新的文献求助10
37秒前
123发布了新的文献求助10
37秒前
Akim应助xxxhhh采纳,获得10
38秒前
王学成发布了新的文献求助10
39秒前
沫笙给沫笙的求助进行了留言
39秒前
GreyHeron发布了新的文献求助10
39秒前
远方发布了新的文献求助10
40秒前
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417