A multi-node self-powered fault detection system by triboelectric-electromagnetic nanosensors for smart transportation

摩擦电效应 纳米传感器 材料科学 节点(物理) 故障检测与隔离 汽车工程 断层(地质) 纳米技术 电气工程 工程类 执行机构 复合材料 结构工程 地震学 地质学
作者
Zheng Fang,Lingji Kong,Jiang‐Fan Chen,Jie Chen,Xinyi Zhao,Dabing Luo,Zutao Zhang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:128: 109882-109882 被引量:3
标识
DOI:10.1016/j.nanoen.2024.109882
摘要

The harnessing of vibrational energy is becoming increasingly pivotal in the development of intelligent rail transit systems. The integration of emerging technologies such as triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), or hybrid generators has become crucial for fault detection and energy harvesting in rail transit. This paper introduces a self-powered fault detection system (SPFDS). SPFDS combines multiple compact rotating Triboelectric-Electromagnetic Nanosensor (TENS) nodes with a deep learning-based diagnostic module to transform vibrational energy generated during train operations into electrical power and accurately identifies five distinct train bogie fault conditions. Simulations and experiments have shown that the TENS nodes, with a root mean square power of 0.21 W and a power density of 1595.7 W/m³, can efficiently detect various bogie faults. Additionally, their power output is adequate to support commercial sensors and Bluetooth modules. Through hyperparameter optimization, the diagnostic module utilizing multi-TENS nodes achieves an average diagnostic accuracy of 99.38 % for the five fault modes of freight train bogies. Implementing multiple TENS nodes in SPFDS enhances fault detection accuracy by an average of 32 % compared to a single TENS node, with a peak increase of 128 %. The multi-node TENS configuration and SPFDS's self-powered detection capabilities represent an innovative approach to complex fault detection, significantly contributing to the advancement of vibration energy harvesting and the development of distributed self-powered sensor network technologies for smart transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常炳发布了新的文献求助10
刚刚
zt发布了新的文献求助10
刚刚
刚刚
box1221发布了新的文献求助10
刚刚
好为发布了新的文献求助10
1秒前
zhan完成签到,获得积分10
1秒前
领导范儿应助受伤馒头采纳,获得10
2秒前
fff完成签到 ,获得积分10
2秒前
zzz完成签到,获得积分20
3秒前
姜晓涵发布了新的文献求助10
5秒前
5秒前
科目三应助辛勤的白枫采纳,获得10
6秒前
6秒前
好为完成签到,获得积分20
8秒前
8秒前
8秒前
科研通AI5应助一天三个蛋采纳,获得10
9秒前
10秒前
共享精神应助明理寄容采纳,获得10
11秒前
Solitude_Z发布了新的文献求助10
11秒前
小鹏哥完成签到,获得积分10
11秒前
11秒前
12秒前
acb发布了新的文献求助10
14秒前
李健的小迷弟应助Solitude_Z采纳,获得10
14秒前
汉堡包应助XUXU采纳,获得10
14秒前
15秒前
文艺的匪发布了新的文献求助10
15秒前
1h发布了新的文献求助10
15秒前
wushuping完成签到,获得积分10
16秒前
道明嗣完成签到 ,获得积分10
16秒前
17秒前
18秒前
向阳而生完成签到,获得积分10
19秒前
19秒前
思源应助yqt采纳,获得10
19秒前
皮皮发布了新的文献求助10
20秒前
acb完成签到,获得积分10
20秒前
22秒前
windqiu完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061433
求助须知:如何正确求助?哪些是违规求助? 4285459
关于积分的说明 13354590
捐赠科研通 4103331
什么是DOI,文献DOI怎么找? 2246615
邀请新用户注册赠送积分活动 1252277
关于科研通互助平台的介绍 1183203