A multi-node self-powered fault detection system by triboelectric-electromagnetic nanosensors for smart transportation

摩擦电效应 纳米传感器 材料科学 节点(物理) 故障检测与隔离 汽车工程 断层(地质) 纳米技术 电气工程 工程类 执行机构 复合材料 结构工程 地震学 地质学
作者
Zheng Fang,Lingji Kong,Jiang‐Fan Chen,Jie Chen,Xinyi Zhao,Dabing Luo,Zutao Zhang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:128: 109882-109882 被引量:3
标识
DOI:10.1016/j.nanoen.2024.109882
摘要

The harnessing of vibrational energy is becoming increasingly pivotal in the development of intelligent rail transit systems. The integration of emerging technologies such as triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), or hybrid generators has become crucial for fault detection and energy harvesting in rail transit. This paper introduces a self-powered fault detection system (SPFDS). SPFDS combines multiple compact rotating Triboelectric-Electromagnetic Nanosensor (TENS) nodes with a deep learning-based diagnostic module to transform vibrational energy generated during train operations into electrical power and accurately identifies five distinct train bogie fault conditions. Simulations and experiments have shown that the TENS nodes, with a root mean square power of 0.21 W and a power density of 1595.7 W/m³, can efficiently detect various bogie faults. Additionally, their power output is adequate to support commercial sensors and Bluetooth modules. Through hyperparameter optimization, the diagnostic module utilizing multi-TENS nodes achieves an average diagnostic accuracy of 99.38 % for the five fault modes of freight train bogies. Implementing multiple TENS nodes in SPFDS enhances fault detection accuracy by an average of 32 % compared to a single TENS node, with a peak increase of 128 %. The multi-node TENS configuration and SPFDS's self-powered detection capabilities represent an innovative approach to complex fault detection, significantly contributing to the advancement of vibration energy harvesting and the development of distributed self-powered sensor network technologies for smart transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓炎林发布了新的文献求助10
刚刚
无花果应助热木采纳,获得10
1秒前
1秒前
1秒前
慕青应助默默安双采纳,获得10
2秒前
阳阳阳发布了新的文献求助10
3秒前
bwl完成签到,获得积分10
3秒前
zhangshu发布了新的文献求助10
5秒前
waikeyan发布了新的文献求助10
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
坚强谷槐完成签到,获得积分10
9秒前
高美美完成签到,获得积分20
9秒前
10秒前
mg完成签到 ,获得积分10
11秒前
txy完成签到 ,获得积分10
12秒前
run关闭了run文献求助
13秒前
默默安双发布了新的文献求助10
14秒前
15秒前
ding应助海上森林的一只猫采纳,获得10
15秒前
15秒前
酷波er应助Fei采纳,获得10
16秒前
小月发布了新的文献求助10
16秒前
桐桐应助zhangshu采纳,获得10
17秒前
18秒前
18秒前
JamesPei应助FDSDK采纳,获得10
19秒前
橘子完成签到 ,获得积分10
21秒前
歌尔德蒙发布了新的文献求助10
21秒前
笨笨棒球应助阳阳阳采纳,获得20
22秒前
LL完成签到,获得积分20
22秒前
waikeyan完成签到,获得积分10
26秒前
Ling完成签到,获得积分10
26秒前
和谐谷菱发布了新的文献求助10
27秒前
28秒前
奋斗的延恶完成签到,获得积分10
30秒前
快去吃蛋糕完成签到,获得积分10
30秒前
30秒前
31秒前
霍冰旋发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150