摩擦电效应
纳米传感器
材料科学
节点(物理)
故障检测与隔离
汽车工程
断层(地质)
纳米技术
电气工程
工程类
执行机构
复合材料
结构工程
地震学
地质学
作者
Zheng Fang,Lingji Kong,Jiang‐Fan Chen,Jie Chen,Xinyi Zhao,Dabing Luo,Zutao Zhang
出处
期刊:Nano Energy
[Elsevier]
日期:2024-09-01
卷期号:128: 109882-109882
标识
DOI:10.1016/j.nanoen.2024.109882
摘要
The harnessing of vibrational energy is becoming increasingly pivotal in the development of intelligent rail transit systems. The integration of emerging technologies such as triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), or hybrid generators has become crucial for fault detection and energy harvesting in rail transit. This paper introduces a self-powered fault detection system (SPFDS). SPFDS combines multiple compact rotating Triboelectric-Electromagnetic Nanosensor (TENS) nodes with a deep learning-based diagnostic module to transform vibrational energy generated during train operations into electrical power and accurately identifies five distinct train bogie fault conditions. Simulations and experiments have shown that the TENS nodes, with a root mean square power of 0.21 W and a power density of 1595.7 W/m³, can efficiently detect various bogie faults. Additionally, their power output is adequate to support commercial sensors and Bluetooth modules. Through hyperparameter optimization, the diagnostic module utilizing multi-TENS nodes achieves an average diagnostic accuracy of 99.38 % for the five fault modes of freight train bogies. Implementing multiple TENS nodes in SPFDS enhances fault detection accuracy by an average of 32 % compared to a single TENS node, with a peak increase of 128 %. The multi-node TENS configuration and SPFDS's self-powered detection capabilities represent an innovative approach to complex fault detection, significantly contributing to the advancement of vibration energy harvesting and the development of distributed self-powered sensor network technologies for smart transportation.
科研通智能强力驱动
Strongly Powered by AbleSci AI