Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020

遥感 环境科学 背景(考古学) 地形 辅助数据 随机森林 均方误差 归一化差异植被指数 气象学 气候变化 地理 计算机科学 地图学 统计 数学 机器学习 考古 生物 生态学
作者
Zhaohua Liu,Jiangping Long,Hui Lin,Hua Sun,Zilin Ye,Tingchen Zhang,Peisong Yang,Yimin Ma
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:944: 173940-173940 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.173940
摘要

In the context of global warming, there is a substantial demand for accurate and cost-effective assessment and comprehensive understanding of forest above-ground biomass (AGB) dynamics. The timeliness and low cost of optical remote sensing data enable the mapping of large-scale forest AGB dynamics. However, mapping forest AGB with optical remote sensing data presents challenges primarily due to data uncertainty and the complex nature of the forest environment. Previous studies have demonstrated the potential of meteorological data in enhancing forest AGB mapping. To accurately capture the dynamics of forest AGB, we initially acquired Landsat datasets, digital elevation model (DEM), and meteorological datasets (temperature, humidity, and precipitation) from 2010 to 2020 in Changsha-Zhuzhou-Xiangtan urban agglomeration (CZT) located in Hunan Province, China. Spectral variables (SVs), including spectral bands and vegetation indices, were extracted from Landsat images, while meteorological variables (MVs) were derived from the monthly meteorological data using the Savitzky-Golay (S-G) filtering algorithm. Additionally, terrain variables (TVs) were also extracted from the DEM data. Three modelling models, multiple linear regression (MLR), K nearest neighbor (KNN) and random forest (RF), were developed for mapping the dynamics of forest AGB in CZT. The result revealed that MVs have the potential to improve forest AGB mapping. Integration of MVs into the models resulted in a significant reduction in root mean square error (RMSE) ranging from 32.85 % to 19.25 % compared to utilizing only SVs. However, minimal improvement was observed with the inclusion of TVs due to negligible topographic relief within the study area. An upward trend of forest AGB in CZT was observed during this period, which can be attributed to the effective implementation of government environmental protection policies. It is confirmed that the meteorological data has significant contribution to forest AGB mapping, thereby endorsing advancements in forest resource monitoring and management programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头号玩家完成签到,获得积分10
刚刚
小海完成签到,获得积分10
3秒前
3秒前
4秒前
八八九九九1完成签到,获得积分10
4秒前
5秒前
5秒前
doctor_loong完成签到 ,获得积分10
5秒前
CLTTTt完成签到,获得积分10
7秒前
miku完成签到 ,获得积分10
8秒前
养乐多完成签到,获得积分10
9秒前
Leach完成签到 ,获得积分10
10秒前
田様应助胖小羊采纳,获得10
12秒前
wxxz完成签到,获得积分10
12秒前
汤成莉完成签到 ,获得积分10
16秒前
大个应助花开的石头采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
大力水手完成签到,获得积分0
22秒前
BlueKitty完成签到,获得积分10
26秒前
1z完成签到,获得积分10
27秒前
eyu完成签到,获得积分10
27秒前
jw完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
31秒前
Han完成签到,获得积分10
32秒前
chenwang发布了新的文献求助20
32秒前
34秒前
36秒前
jixuchance完成签到,获得积分10
37秒前
HK完成签到 ,获得积分10
39秒前
北斗文曲星完成签到,获得积分10
39秒前
7弥LY完成签到 ,获得积分10
40秒前
天真的大船完成签到 ,获得积分10
40秒前
无极2023完成签到 ,获得积分0
41秒前
凌泉完成签到 ,获得积分10
41秒前
41秒前
AskNature完成签到,获得积分10
44秒前
花开的石头完成签到,获得积分10
45秒前
狂野元枫完成签到 ,获得积分10
47秒前
楚寅完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215135
关于积分的说明 13111370
捐赠科研通 3997082
什么是DOI,文献DOI怎么找? 2187751
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740