Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020

遥感 环境科学 背景(考古学) 地形 辅助数据 随机森林 均方误差 归一化差异植被指数 气象学 气候变化 地理 计算机科学 地图学 统计 数学 生态学 考古 机器学习 生物
作者
Zhaohua Liu,Jiangping Long,Hui Lin,Hua Sun,Zilin Ye,Tingchen Zhang,Peisong Yang,Yimin Ma
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:944: 173940-173940
标识
DOI:10.1016/j.scitotenv.2024.173940
摘要

In the context of global warming, there is a substantial demand for accurate and cost-effective assessment and comprehensive understanding of forest above-ground biomass (AGB) dynamics. The timeliness and low cost of optical remote sensing data enable the mapping of large-scale forest AGB dynamics. However, mapping forest AGB with optical remote sensing data presents challenges primarily due to data uncertainty and the complex nature of the forest environment. Previous studies have demonstrated the potential of meteorological data in enhancing forest AGB mapping. To accurately capture the dynamics of forest AGB, we initially acquired Landsat datasets, digital elevation model (DEM), and meteorological datasets (temperature, humidity, and precipitation) from 2010 to 2020 in Changsha-Zhuzhou-Xiangtan urban agglomeration (CZT) located in Hunan Province, China. Spectral variables (SVs), including spectral bands and vegetation indices, were extracted from Landsat images, while meteorological variables (MVs) were derived from the monthly meteorological data using the Savitzky-Golay (S-G) filtering algorithm. Additionally, terrain variables (TVs) were also extracted from the DEM data. Three modelling models, multiple linear regression (MLR), K nearest neighbor (KNN) and random forest (RF), were developed for mapping the dynamics of forest AGB in CZT. The result revealed that MVs have the potential to improve forest AGB mapping. Integration of MVs into the models resulted in a significant reduction in root mean square error (RMSE) ranging from 32.85 % to 19.25 % compared to utilizing only SVs. However, minimal improvement was observed with the inclusion of TVs due to negligible topographic relief within the study area. An upward trend of forest AGB in CZT was observed during this period, which can be attributed to the effective implementation of government environmental protection policies. It is confirmed that the meteorological data has significant contribution to forest AGB mapping, thereby endorsing advancements in forest resource monitoring and management programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二零二六完成签到 ,获得积分10
刚刚
嘉博学长发布了新的文献求助10
1秒前
温谷丝完成签到,获得积分10
4秒前
单细胞完成签到 ,获得积分0
5秒前
mxq完成签到,获得积分10
8秒前
wanci应助欢喜灵13采纳,获得10
8秒前
Nice完成签到,获得积分10
9秒前
10秒前
星辰大海应助萧水白采纳,获得100
10秒前
11秒前
听话的幼荷完成签到,获得积分20
13秒前
Demo发布了新的文献求助10
15秒前
15秒前
医只兔发布了新的文献求助10
17秒前
XinXin完成签到,获得积分10
17秒前
zyfqpc应助谷贝贝采纳,获得10
17秒前
芦同学发布了新的文献求助10
18秒前
娃哈哈完成签到 ,获得积分10
19秒前
jerry完成签到,获得积分10
20秒前
20秒前
欢喜灵13发布了新的文献求助10
20秒前
顺利的飞荷完成签到,获得积分0
22秒前
bgx发布了新的文献求助10
23秒前
QXR完成签到,获得积分10
23秒前
酷炫抽屉完成签到 ,获得积分10
23秒前
芦同学完成签到,获得积分10
25秒前
25秒前
morgenlefay完成签到,获得积分10
27秒前
WY完成签到,获得积分20
27秒前
欢喜灵13完成签到,获得积分10
28秒前
星辰大海应助Li采纳,获得10
28秒前
mz完成签到,获得积分10
29秒前
wangjialong完成签到,获得积分10
32秒前
上官若男应助Mircale采纳,获得10
33秒前
方婷完成签到 ,获得积分20
33秒前
33秒前
这小猪真帅完成签到,获得积分10
33秒前
852应助顺利皮带采纳,获得10
36秒前
科目三应助李昕123采纳,获得10
36秒前
嘉木完成签到 ,获得积分10
39秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620