Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020

遥感 环境科学 背景(考古学) 地形 辅助数据 随机森林 均方误差 归一化差异植被指数 气象学 气候变化 地理 计算机科学 地图学 统计 数学 机器学习 考古 生物 生态学
作者
Zhaohua Liu,Jiangping Long,Hui Lin,Hua Sun,Zilin Ye,Tingchen Zhang,Peisong Yang,Yimin Ma
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:944: 173940-173940 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.173940
摘要

In the context of global warming, there is a substantial demand for accurate and cost-effective assessment and comprehensive understanding of forest above-ground biomass (AGB) dynamics. The timeliness and low cost of optical remote sensing data enable the mapping of large-scale forest AGB dynamics. However, mapping forest AGB with optical remote sensing data presents challenges primarily due to data uncertainty and the complex nature of the forest environment. Previous studies have demonstrated the potential of meteorological data in enhancing forest AGB mapping. To accurately capture the dynamics of forest AGB, we initially acquired Landsat datasets, digital elevation model (DEM), and meteorological datasets (temperature, humidity, and precipitation) from 2010 to 2020 in Changsha-Zhuzhou-Xiangtan urban agglomeration (CZT) located in Hunan Province, China. Spectral variables (SVs), including spectral bands and vegetation indices, were extracted from Landsat images, while meteorological variables (MVs) were derived from the monthly meteorological data using the Savitzky-Golay (S-G) filtering algorithm. Additionally, terrain variables (TVs) were also extracted from the DEM data. Three modelling models, multiple linear regression (MLR), K nearest neighbor (KNN) and random forest (RF), were developed for mapping the dynamics of forest AGB in CZT. The result revealed that MVs have the potential to improve forest AGB mapping. Integration of MVs into the models resulted in a significant reduction in root mean square error (RMSE) ranging from 32.85 % to 19.25 % compared to utilizing only SVs. However, minimal improvement was observed with the inclusion of TVs due to negligible topographic relief within the study area. An upward trend of forest AGB in CZT was observed during this period, which can be attributed to the effective implementation of government environmental protection policies. It is confirmed that the meteorological data has significant contribution to forest AGB mapping, thereby endorsing advancements in forest resource monitoring and management programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的美女完成签到,获得积分10
2秒前
3秒前
4秒前
haoliangshi发布了新的文献求助10
5秒前
生动白开水完成签到,获得积分10
6秒前
背后的访冬完成签到,获得积分10
6秒前
cyp发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
所所应助樊夏岚采纳,获得10
8秒前
LVVVB完成签到,获得积分10
9秒前
热情蜗牛完成签到 ,获得积分10
12秒前
啦啦啦完成签到 ,获得积分10
13秒前
几一昂完成签到 ,获得积分10
13秒前
踏实幻巧完成签到,获得积分10
14秒前
南宫映榕完成签到,获得积分10
14秒前
李小刀睡不醒完成签到 ,获得积分10
15秒前
YT完成签到 ,获得积分10
15秒前
16秒前
情怀应助努力飞的麻雀采纳,获得10
16秒前
勤劳的白晴完成签到,获得积分10
17秒前
CHEN完成签到,获得积分10
18秒前
张嘉芬发布了新的文献求助10
20秒前
银海里的玫瑰_完成签到 ,获得积分10
21秒前
摸鱼主编magazine完成签到,获得积分10
23秒前
cyp完成签到,获得积分10
23秒前
涵涵涵完成签到,获得积分10
24秒前
24秒前
可爱的函函应助ycd采纳,获得10
25秒前
666888完成签到 ,获得积分10
25秒前
万万完成签到 ,获得积分10
25秒前
26秒前
CipherSage应助勤劳的白晴采纳,获得10
26秒前
wend完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
难过的溪流完成签到 ,获得积分10
27秒前
光学工程小学完成签到 ,获得积分10
28秒前
888完成签到,获得积分10
28秒前
涛老三发布了新的文献求助10
28秒前
bjw111完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418727
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143603
捐赠科研通 4450594
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410456