Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020

遥感 环境科学 背景(考古学) 地形 辅助数据 随机森林 均方误差 归一化差异植被指数 气象学 气候变化 地理 计算机科学 地图学 统计 数学 生态学 考古 机器学习 生物
作者
Zhaohua Liu,Jiangping Long,Hui Lin,Hua Sun,Zilin Ye,Tingchen Zhang,Peisong Yang,Yimin Ma
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:944: 173940-173940
标识
DOI:10.1016/j.scitotenv.2024.173940
摘要

In the context of global warming, there is a substantial demand for accurate and cost-effective assessment and comprehensive understanding of forest above-ground biomass (AGB) dynamics. The timeliness and low cost of optical remote sensing data enable the mapping of large-scale forest AGB dynamics. However, mapping forest AGB with optical remote sensing data presents challenges primarily due to data uncertainty and the complex nature of the forest environment. Previous studies have demonstrated the potential of meteorological data in enhancing forest AGB mapping. To accurately capture the dynamics of forest AGB, we initially acquired Landsat datasets, digital elevation model (DEM), and meteorological datasets (temperature, humidity, and precipitation) from 2010 to 2020 in Changsha-Zhuzhou-Xiangtan urban agglomeration (CZT) located in Hunan Province, China. Spectral variables (SVs), including spectral bands and vegetation indices, were extracted from Landsat images, while meteorological variables (MVs) were derived from the monthly meteorological data using the Savitzky-Golay (S-G) filtering algorithm. Additionally, terrain variables (TVs) were also extracted from the DEM data. Three modelling models, multiple linear regression (MLR), K nearest neighbor (KNN) and random forest (RF), were developed for mapping the dynamics of forest AGB in CZT. The result revealed that MVs have the potential to improve forest AGB mapping. Integration of MVs into the models resulted in a significant reduction in root mean square error (RMSE) ranging from 32.85 % to 19.25 % compared to utilizing only SVs. However, minimal improvement was observed with the inclusion of TVs due to negligible topographic relief within the study area. An upward trend of forest AGB in CZT was observed during this period, which can be attributed to the effective implementation of government environmental protection policies. It is confirmed that the meteorological data has significant contribution to forest AGB mapping, thereby endorsing advancements in forest resource monitoring and management programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
San万完成签到,获得积分10
3秒前
sci完成签到,获得积分10
4秒前
乐乐应助好看的鸵鸟采纳,获得10
5秒前
Ronnie发布了新的文献求助10
7秒前
活力山蝶应助麻辣牛肉采纳,获得10
8秒前
9秒前
9秒前
ZJFL完成签到,获得积分10
10秒前
11秒前
2331547774发布了新的文献求助10
11秒前
湘华发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
木头人应助酷酷羊乌云采纳,获得10
13秒前
烟花应助听话的白易采纳,获得10
13秒前
wisper发布了新的文献求助10
14秒前
herococa应助陶醉山灵采纳,获得10
15秒前
15秒前
su123发布了新的文献求助10
16秒前
17秒前
19秒前
可爱的函函应助加快步伐采纳,获得10
20秒前
内向怀曼完成签到,获得积分10
21秒前
星辰大海应助湘华采纳,获得10
21秒前
22秒前
江屿发布了新的文献求助10
22秒前
CodeCraft应助su123采纳,获得10
23秒前
孟浩然完成签到 ,获得积分10
24秒前
25秒前
25秒前
25秒前
Owen应助释然采纳,获得10
28秒前
楚天发布了新的文献求助10
28秒前
29秒前
今后应助兔雳采纳,获得10
29秒前
29秒前
jianhan发布了新的文献求助10
29秒前
31秒前
张小璐璐发布了新的文献求助10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341