Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020

遥感 环境科学 背景(考古学) 地形 辅助数据 随机森林 均方误差 归一化差异植被指数 气象学 气候变化 地理 计算机科学 地图学 统计 数学 机器学习 考古 生物 生态学
作者
Zhaohua Liu,Jiangping Long,Hui Lin,Hua Sun,Zilin Ye,Tingchen Zhang,Peisong Yang,Yimin Ma
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:944: 173940-173940 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.173940
摘要

In the context of global warming, there is a substantial demand for accurate and cost-effective assessment and comprehensive understanding of forest above-ground biomass (AGB) dynamics. The timeliness and low cost of optical remote sensing data enable the mapping of large-scale forest AGB dynamics. However, mapping forest AGB with optical remote sensing data presents challenges primarily due to data uncertainty and the complex nature of the forest environment. Previous studies have demonstrated the potential of meteorological data in enhancing forest AGB mapping. To accurately capture the dynamics of forest AGB, we initially acquired Landsat datasets, digital elevation model (DEM), and meteorological datasets (temperature, humidity, and precipitation) from 2010 to 2020 in Changsha-Zhuzhou-Xiangtan urban agglomeration (CZT) located in Hunan Province, China. Spectral variables (SVs), including spectral bands and vegetation indices, were extracted from Landsat images, while meteorological variables (MVs) were derived from the monthly meteorological data using the Savitzky-Golay (S-G) filtering algorithm. Additionally, terrain variables (TVs) were also extracted from the DEM data. Three modelling models, multiple linear regression (MLR), K nearest neighbor (KNN) and random forest (RF), were developed for mapping the dynamics of forest AGB in CZT. The result revealed that MVs have the potential to improve forest AGB mapping. Integration of MVs into the models resulted in a significant reduction in root mean square error (RMSE) ranging from 32.85 % to 19.25 % compared to utilizing only SVs. However, minimal improvement was observed with the inclusion of TVs due to negligible topographic relief within the study area. An upward trend of forest AGB in CZT was observed during this period, which can be attributed to the effective implementation of government environmental protection policies. It is confirmed that the meteorological data has significant contribution to forest AGB mapping, thereby endorsing advancements in forest resource monitoring and management programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
Sleven完成签到,获得积分10
6秒前
满意的念柏完成签到,获得积分10
8秒前
崔崔发布了新的文献求助10
9秒前
朝圣者发布了新的文献求助10
11秒前
优雅的千雁完成签到,获得积分10
11秒前
赧赧完成签到 ,获得积分10
16秒前
深情安青应助朝圣者采纳,获得10
17秒前
mayberichard完成签到,获得积分10
17秒前
NexusExplorer应助qwertyu111采纳,获得10
18秒前
明理从露完成签到 ,获得积分10
19秒前
long完成签到 ,获得积分10
21秒前
桃子味完成签到,获得积分10
26秒前
30秒前
轻松绿旋完成签到,获得积分10
32秒前
喵了个咪完成签到 ,获得积分10
33秒前
annie2D完成签到,获得积分10
34秒前
nusiew完成签到,获得积分10
35秒前
多边形完成签到 ,获得积分10
43秒前
风中琦完成签到 ,获得积分10
44秒前
49秒前
ballalla完成签到,获得积分10
50秒前
Bonnienuit完成签到 ,获得积分10
51秒前
Meet完成签到 ,获得积分10
52秒前
强壮的美女完成签到,获得积分10
53秒前
55秒前
TheGreat完成签到,获得积分10
58秒前
59秒前
英姑应助doudouw采纳,获得10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
慕青应助边边角角落落采纳,获得10
1分钟前
1分钟前
大知闲闲完成签到 ,获得积分10
1分钟前
萌兴完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
呆呆完成签到 ,获得积分10
1分钟前
帅气的宽完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293860
求助须知:如何正确求助?哪些是违规求助? 4443921
关于积分的说明 13831743
捐赠科研通 4327836
什么是DOI,文献DOI怎么找? 2375755
邀请新用户注册赠送积分活动 1371023
关于科研通互助平台的介绍 1336043