Polyp segmentation network based on lightweight model and reverse attention mechanisms

计算机科学 分割 人工智能
作者
Jianwu Long,Chou‐Chen Yang,Xinlei Song,Zilong Zeng,Yanfei Ren
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (3) 被引量:1
标识
DOI:10.1002/ima.23062
摘要

Abstract Colorectal cancer is a common gastrointestinal malignancy. Early screening and segmentation of colorectal polyps are of great clinical significance. Colonoscopy is the most effective method to detect polyps, but some polyps may be missed in the detection process. On this basis, the use of computer‐aided diagnosis technology is particularly important for colorectal polyp segmentation. To improve the detection rate of intestinal polyps under colonoscopy, a polyp segmentation network (MobileRaNet) based on a lightweight model and reverse attention (RA) mechanism was proposed to accurately segment polyps in colonoscopy images. The coordinated attention module is used to improve MobileNetV3 and make it the backbone network (CaNet). Second, a part of the output of the high‐level feature from the backbone network is passed into the parallel axial receptive field module (PA_RFB) to extract the global dependency representation without losing the details. Third, a global map is generated based on this combined feature as the initial boot area of the subsequent components. Finally, the RA module is used to mine the target region and boundary clues to improve the segmentation accuracy. To verify the effectiveness and lightweight performance of the algorithm, five challenging datasets, including CVC‐ColonDB, CVC‐300, and Kvasir, are used in this paper. In six indexes, including MeanDice, MeanIoU, and MAE, compared with seven typical models such as PraNet and TransUnet, accuracy, FLOPs, parameters, and FPS were compared. The experimental results show that the MobileRaNet proposed in this paper has improved the performance of the five datasets to varying degrees, especially the MeanDice and MeanIOU indexes of the Kvasir dataset reach 91.2% and 85.6%, which are, respectively, increased by 1.4% and 1.6% compared with PraNet. Compared with PraNet, FLOPs and parameters decreased by 83.3% and 76.7%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术混子完成签到,获得积分10
1秒前
3秒前
8R60d8应助mostspecial采纳,获得10
7秒前
dididi发布了新的文献求助10
8秒前
郭郭完成签到 ,获得积分10
8秒前
沉默寻凝完成签到,获得积分10
9秒前
pjs发布了新的文献求助10
9秒前
11秒前
EvolDog完成签到,获得积分20
11秒前
12秒前
12秒前
木光完成签到,获得积分20
12秒前
牧尔芙完成签到 ,获得积分10
13秒前
神介.Tzx发布了新的文献求助10
13秒前
月月完成签到 ,获得积分10
14秒前
无心的枕头完成签到,获得积分10
16秒前
18秒前
Yangzx发布了新的文献求助10
18秒前
不爱胡椒发布了新的文献求助10
20秒前
墨痕mohen完成签到 ,获得积分10
20秒前
小小兔完成签到,获得积分20
21秒前
小马甲应助pjs采纳,获得10
21秒前
22秒前
yyyyyyy发布了新的文献求助10
23秒前
AN发布了新的文献求助10
24秒前
will完成签到,获得积分10
24秒前
17835152738发布了新的文献求助10
24秒前
柠木关注了科研通微信公众号
25秒前
kento应助科研通管家采纳,获得100
29秒前
Owen应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
30秒前
墨墨发布了新的文献求助10
31秒前
tangt糖糖完成签到,获得积分10
31秒前
左丘冥完成签到,获得积分10
32秒前
答案。完成签到 ,获得积分10
32秒前
32秒前
Tonnyjing应助yyyyyyy采纳,获得10
33秒前
33秒前
路人丨安完成签到,获得积分10
34秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992