Multisource information fusion model for deformation safety monitoring of earth and rock dams based on deep graph feature fusion

安全监测 特征(语言学) 冗余(工程) 传感器融合 保险丝(电气) 变形监测 变形(气象学) 计算机科学 图形 人工智能 数据挖掘 地质学 工程类 理论计算机科学 电气工程 生物 操作系统 生物技术 语言学 海洋学 哲学
作者
Jichen Tian,Yanling Li,Yonghua Luo,Han Zhang,Xiang Lü
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:2
标识
DOI:10.1177/14759217241244549
摘要

Constructing a long-term deformation monitoring model for earth–rock dams that integrates multisource monitoring information is highly important for enhancing the safety state evaluation and monitoring effectiveness of such dams. In this paper, we propose a new health monitoring model named the deformation–seepage–water level multimeasurement point health monitoring (DSW-MPHM) model for earth–rock dams based on deep graph feature fusion. This model fuses coupled seepage, deformation, and water level features from different monitoring sites of the dam body, base, and shoulder. To achieve this goal, we first establish a new module to fuse spatial and temporal features using graph convolutional networks and long short-term memory. Seepage features and water level features are then extracted using graph attention mechanisms. Subsequently, we employ the feature fusion technique, which incorporates principal component analysis and gated fusers, to construct the DSW-MPHM model, which effectively fuses information from multiple sources. This novel approach successfully addresses the issues of information redundancy and the limited reliability of monitoring models. To verify the validity of the model, it is applied to an endoscopic deformation monitoring program of a panel rockfill dam with a height of 185.5 m. The results demonstrate the superior stability and effectiveness of the proposed method compared to those of 10 baseline prediction models. Additionally, the characterization of the seepage and water level features extracted from the model is verified for its reasonableness. Thus, our proposed model is well suited for practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx完成签到,获得积分10
刚刚
Beth完成签到 ,获得积分10
1秒前
wang发布了新的文献求助10
1秒前
天真书竹发布了新的文献求助10
1秒前
2秒前
SamuelLiu发布了新的文献求助30
2秒前
单薄碧灵完成签到 ,获得积分10
3秒前
17835152738完成签到,获得积分10
4秒前
pp发布了新的文献求助10
4秒前
zqh740完成签到,获得积分10
5秒前
6秒前
SamuelLiu完成签到,获得积分10
8秒前
钱多多完成签到,获得积分10
8秒前
8秒前
pluto完成签到,获得积分0
9秒前
Hello应助kyra采纳,获得20
9秒前
迷路迎南发布了新的文献求助10
9秒前
Owen应助zqh740采纳,获得10
10秒前
靓丽的如南完成签到,获得积分10
10秒前
深情安青应助木子采纳,获得10
12秒前
lanze发布了新的文献求助10
12秒前
wudi19887完成签到,获得积分20
14秒前
LLL完成签到 ,获得积分10
15秒前
李超完成签到,获得积分10
16秒前
大力的无声完成签到 ,获得积分10
19秒前
wang完成签到,获得积分10
21秒前
lanze完成签到,获得积分10
22秒前
24秒前
传奇3应助ljscjth采纳,获得10
26秒前
幻月完成签到,获得积分10
26秒前
27秒前
28秒前
天真书竹完成签到,获得积分20
29秒前
虚心的阿松完成签到,获得积分20
31秒前
huang’发布了新的文献求助10
32秒前
kyra完成签到,获得积分10
33秒前
33秒前
灰色与青完成签到,获得积分10
34秒前
34秒前
JIUR发布了新的文献求助10
34秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379524
求助须知:如何正确求助?哪些是违规求助? 2995070
关于积分的说明 8761183
捐赠科研通 2679812
什么是DOI,文献DOI怎么找? 1467685
科研通“疑难数据库(出版商)”最低求助积分说明 678751
邀请新用户注册赠送积分活动 670475