L-VSM: Label-Driven View-Specific Fusion for Multiview Multilabel Classification

多标签分类 融合 人工智能 计算机科学 模式识别(心理学) 哲学 语言学
作者
Gengyu Lyu,Zhen Yang,Xiang Deng,Songhe Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3390776
摘要

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sanso发布了新的文献求助10
3秒前
体贴花卷发布了新的文献求助30
4秒前
一丁雨完成签到,获得积分10
5秒前
5秒前
6秒前
龙无赖关注了科研通微信公众号
9秒前
陈仲发布了新的文献求助10
10秒前
bkagyin应助荀誉采纳,获得10
10秒前
12秒前
FashionBoy应助爱学习的小白采纳,获得10
14秒前
Owen应助yao采纳,获得10
15秒前
15秒前
Tang发布了新的文献求助10
16秒前
科研通AI2S应助科研难采纳,获得10
17秒前
18秒前
18秒前
shinyar发布了新的文献求助10
19秒前
21秒前
FOODHUA发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
25秒前
荀誉发布了新的文献求助10
26秒前
hins发布了新的文献求助10
26秒前
8R60d8完成签到,获得积分0
27秒前
xu发布了新的文献求助10
28秒前
英姑应助卡比兽本兽采纳,获得10
28秒前
haifei发布了新的文献求助10
28秒前
29秒前
Akim应助宝也采纳,获得10
30秒前
门柱帝发布了新的文献求助10
31秒前
慕青应助Unsurpassed采纳,获得10
31秒前
sanso完成签到,获得积分10
34秒前
荀誉完成签到,获得积分20
34秒前
科目三应助踏实的芸遥采纳,获得30
34秒前
麻辣厨子发布了新的文献求助10
34秒前
123完成签到,获得积分20
34秒前
爱学习的小白完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198