L-VSM: Label-Driven View-Specific Fusion for Multiview Multilabel Classification

人工智能 计算机科学 图形 子空间拓扑 特征学习 特征(语言学) 分类器(UML) 模式识别(心理学) 机器学习 理论计算机科学 哲学 语言学
作者
Gengyu Lyu,Zhen Yang,Xiang Deng,Songhe Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3390776
摘要

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ab完成签到,获得积分10
4秒前
Fiona完成签到 ,获得积分10
12秒前
小熊完成签到 ,获得积分10
13秒前
14秒前
小墨墨完成签到 ,获得积分10
19秒前
24秒前
忧伤的二锅头完成签到 ,获得积分10
24秒前
从容映易完成签到,获得积分10
24秒前
无限的含羞草完成签到,获得积分10
24秒前
leo完成签到 ,获得积分10
25秒前
28秒前
小蘑菇应助不安的鸡翅采纳,获得10
29秒前
卉不卉完成签到,获得积分10
39秒前
40秒前
WQ发布了新的文献求助10
43秒前
卉不卉发布了新的文献求助10
46秒前
jkaaa完成签到,获得积分10
47秒前
jenningseastera应助WQ采纳,获得10
52秒前
underway发布了新的文献求助10
55秒前
xinqianying完成签到 ,获得积分10
57秒前
WQ完成签到,获得积分20
1分钟前
协和_子鱼完成签到,获得积分10
1分钟前
1分钟前
苦行僧完成签到 ,获得积分10
1分钟前
英俊的铭应助feng采纳,获得10
1分钟前
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
馅饼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
feng发布了新的文献求助10
1分钟前
Lorain完成签到,获得积分20
1分钟前
wmy发布了新的文献求助10
1分钟前
where完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
Titi完成签到 ,获得积分10
1分钟前
where发布了新的文献求助10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251