L-VSM: Label-Driven View-Specific Fusion for Multiview Multilabel Classification

人工智能 计算机科学 图形 子空间拓扑 特征学习 特征(语言学) 分类器(UML) 模式识别(心理学) 机器学习 理论计算机科学 哲学 语言学
作者
Gengyu Lyu,Zhen Yang,Xiang Deng,Songhe Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 6569-6583 被引量:3
标识
DOI:10.1109/tnnls.2024.3390776
摘要

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuhao发布了新的文献求助10
刚刚
1秒前
邓谷云完成签到,获得积分10
1秒前
科研通AI6应助私欲宝宝采纳,获得10
1秒前
研友_X89o6n完成签到,获得积分0
2秒前
123完成签到 ,获得积分10
2秒前
ProfWang完成签到,获得积分10
3秒前
吹吹完成签到,获得积分10
3秒前
LZH发布了新的文献求助10
6秒前
6秒前
kkPi完成签到,获得积分10
7秒前
苹果亦巧发布了新的文献求助30
7秒前
7秒前
miao完成签到,获得积分20
7秒前
7秒前
9秒前
9秒前
从容的方盒完成签到 ,获得积分10
9秒前
10秒前
11秒前
深情的鞯完成签到,获得积分10
12秒前
迪迪张发布了新的文献求助10
12秒前
科研通AI6应助美女5语采纳,获得10
12秒前
灰灰完成签到,获得积分10
12秒前
13秒前
丘比特应助Gaowenjie采纳,获得10
13秒前
科目三应助遇见采纳,获得10
14秒前
15秒前
Liam发布了新的文献求助10
15秒前
16秒前
shy发布了新的文献求助10
17秒前
科研通AI6应助siren采纳,获得10
17秒前
pluto应助Rottyyii采纳,获得10
18秒前
RUI完成签到,获得积分0
18秒前
李健应助天一采纳,获得10
20秒前
李李李李李完成签到 ,获得积分10
21秒前
思源应助西因采纳,获得10
21秒前
kokenbi完成签到,获得积分10
21秒前
dandna完成签到 ,获得积分10
23秒前
LZH发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241