L-VSM: Label-Driven View-Specific Fusion for Multiview Multilabel Classification

人工智能 计算机科学 图形 子空间拓扑 特征学习 特征(语言学) 分类器(UML) 模式识别(心理学) 机器学习 理论计算机科学 语言学 哲学
作者
Gengyu Lyu,Zhen Yang,Xiang Deng,Songhe Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3390776
摘要

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱芷珊完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
顺心飞雪完成签到,获得积分10
1秒前
脑洞疼应助龙雾采纳,获得10
1秒前
科研通AI2S应助坚定的骁采纳,获得10
1秒前
欣喜忻完成签到,获得积分10
1秒前
桃桃发布了新的文献求助10
2秒前
香蕉觅云应助Luos采纳,获得10
2秒前
smile完成签到 ,获得积分10
2秒前
zhao完成签到 ,获得积分10
2秒前
芽芽配茄子完成签到,获得积分10
3秒前
糟糕的富完成签到,获得积分10
3秒前
3秒前
yang发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
GoodSun发布了新的文献求助10
4秒前
lxt完成签到,获得积分10
5秒前
豆本豆完成签到,获得积分10
5秒前
5秒前
5秒前
热心市民王先生完成签到,获得积分10
5秒前
积极的随阴完成签到,获得积分10
5秒前
写得出发的中完成签到,获得积分10
6秒前
应井发布了新的文献求助10
6秒前
7秒前
靓仔我来帮你完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
伞下铭完成签到 ,获得积分10
8秒前
Akim应助冬嘉采纳,获得10
8秒前
不安的招牌完成签到,获得积分10
9秒前
Nana完成签到 ,获得积分10
9秒前
zl发布了新的文献求助10
9秒前
光亮的问凝完成签到 ,获得积分10
9秒前
糟糕的富发布了新的文献求助30
9秒前
充电宝应助杨扬采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5010469
求助须知:如何正确求助?哪些是违规求助? 4252264
关于积分的说明 13250175
捐赠科研通 4054461
什么是DOI,文献DOI怎么找? 2217689
邀请新用户注册赠送积分活动 1227272
关于科研通互助平台的介绍 1149383