Multi-instance learning based artificial intelligence model to assist vocal fold leukoplakia diagnosis: A multicentre diagnostic study

医学 折叠(高阶函数) 皮肤病科 人工智能 计算机科学 机械工程 工程类
作者
Meiling Wang,Cheng‐Wei Tie,Jianhui Wang,Ji‐Qing Zhu,Bing‐Hong Chen,Ying Li,Sen Zhang,Lin Liu,Li Guo,Yang Long,Liqun Yang,Wei Jiao,Feng Jiang,Zhiqiang Zhao,Guiqi Wang,Wei Zhang,Quan‐Mao Zhang,Xiao‐Guang Ni
出处
期刊:American Journal of Otolaryngology [Elsevier]
卷期号:45 (4): 104342-104342
标识
DOI:10.1016/j.amjoto.2024.104342
摘要

To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740–0.811) and 0.720 (95 % CI 0.684–0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798–0.940) and 0.851 (95 % CI 0.756–0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743–0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682–0.755) to 0.808 (95 % CI 0.775–0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608–0.686) to 0.807 (95 % CI 0.773–0.837) for junior otolaryngologists. The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助优秀不愁采纳,获得10
刚刚
科目三应助XWER采纳,获得10
刚刚
顾暖发布了新的文献求助10
3秒前
4秒前
abc97发布了新的文献求助20
4秒前
6秒前
7秒前
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Chem应助科研通管家采纳,获得20
9秒前
险胜应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
宁洛尘完成签到 ,获得积分10
10秒前
11秒前
ku完成签到,获得积分10
11秒前
14秒前
zai发布了新的文献求助10
14秒前
在水一方应助ACS副主编采纳,获得10
15秒前
Akim应助孤独的猕猴桃采纳,获得10
15秒前
S.S.N完成签到 ,获得积分10
16秒前
18秒前
健康的沂完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
晚风完成签到,获得积分10
23秒前
23秒前
24秒前
pan发布了新的文献求助10
24秒前
25秒前
25秒前
小茗同学发布了新的文献求助10
26秒前
健康的沂发布了新的文献求助30
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540