Multi-instance learning based artificial intelligence model to assist vocal fold leukoplakia diagnosis: A multicentre diagnostic study

医学 折叠(高阶函数) 皮肤病科 人工智能 计算机科学 机械工程 工程类
作者
Meiling Wang,Cheng‐Wei Tie,Jianhui Wang,Ji‐Qing Zhu,Bing‐Hong Chen,Ying Li,Sen Zhang,Lin Liu,Li Guo,Yang Long,Liqun Yang,Wei Jiao,Feng Jiang,Zhiqiang Zhao,Guiqi Wang,Wei Zhang,Quan‐Mao Zhang,Xiao‐Guang Ni
出处
期刊:American Journal of Otolaryngology [Elsevier]
卷期号:45 (4): 104342-104342
标识
DOI:10.1016/j.amjoto.2024.104342
摘要

To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740–0.811) and 0.720 (95 % CI 0.684–0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798–0.940) and 0.851 (95 % CI 0.756–0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743–0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682–0.755) to 0.808 (95 % CI 0.775–0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608–0.686) to 0.807 (95 % CI 0.773–0.837) for junior otolaryngologists. The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呱呱发布了新的文献求助10
1秒前
小丑鱼儿发布了新的文献求助10
1秒前
2秒前
zcl应助等待的幼晴采纳,获得50
2秒前
杨哈哈哈发布了新的文献求助10
2秒前
2秒前
烤布蕾应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
费宇程发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Vanilla应助科研通管家采纳,获得20
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得30
5秒前
Owen应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得30
5秒前
Vanilla应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
fairy完成签到 ,获得积分10
5秒前
田様应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004