Multi-instance learning based artificial intelligence model to assist vocal fold leukoplakia diagnosis: A multicentre diagnostic study

医学 折叠(高阶函数) 皮肤病科 人工智能 计算机科学 机械工程 工程类
作者
Meiling Wang,Cheng‐Wei Tie,Jianhui Wang,Ji‐Qing Zhu,Bing‐Hong Chen,Ying Li,Sen Zhang,Lin Liu,Li Guo,Yang Long,Liqun Yang,Wei Jiao,Feng Jiang,Zhiqiang Zhao,Guiqi Wang,Wei Zhang,Quan‐Mao Zhang,Xiao‐Guang Ni
出处
期刊:American Journal of Otolaryngology [Elsevier BV]
卷期号:45 (4): 104342-104342
标识
DOI:10.1016/j.amjoto.2024.104342
摘要

To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740–0.811) and 0.720 (95 % CI 0.684–0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798–0.940) and 0.851 (95 % CI 0.756–0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743–0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682–0.755) to 0.808 (95 % CI 0.775–0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608–0.686) to 0.807 (95 % CI 0.773–0.837) for junior otolaryngologists. The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱学习的大聪明完成签到,获得积分10
1秒前
快飞飞完成签到 ,获得积分10
1秒前
LIU完成签到,获得积分10
2秒前
秘小先儿应助张晟辉采纳,获得10
2秒前
lzp发布了新的文献求助10
2秒前
Little2发布了新的文献求助10
2秒前
清爽的铭发布了新的文献求助20
2秒前
就滴滴勾儿完成签到,获得积分10
3秒前
高高高完成签到,获得积分10
3秒前
迅速的鹤完成签到,获得积分10
3秒前
传奇3应助STP顶峰相见采纳,获得10
3秒前
星期八约会猪猪侠完成签到,获得积分10
4秒前
朱先生完成签到 ,获得积分10
4秒前
不知所措的咪完成签到,获得积分10
4秒前
哆啦的空间站完成签到,获得积分10
4秒前
Army616完成签到,获得积分10
4秒前
4秒前
烂漫奇异果完成签到,获得积分10
4秒前
零一发布了新的文献求助10
5秒前
小广完成签到,获得积分10
5秒前
Leclerc应助LJQ采纳,获得10
6秒前
7秒前
野猪大王完成签到 ,获得积分10
7秒前
碧蓝幻灵完成签到,获得积分10
8秒前
8秒前
ZZ完成签到,获得积分20
8秒前
烟花应助鳄鱼蛋采纳,获得10
8秒前
拼搏尔风发布了新的文献求助30
8秒前
bkagyin应助人生若只如初见采纳,获得10
9秒前
认真丹亦完成签到 ,获得积分10
9秒前
9秒前
lily完成签到,获得积分10
10秒前
10秒前
啊撒网大大e完成签到,获得积分10
10秒前
爱吃榴莲完成签到,获得积分20
11秒前
kuiuLinvk完成签到,获得积分10
11秒前
11秒前
11秒前
所所应助四然采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051