3D Target Detection Incorporating Point Cloud Columnarization and Attention Mechanisms in Intelligent Driving Systems

计算机科学 点云 云计算 计算机视觉 人机交互 人工智能 操作系统
作者
Hongliang Wang,Jingzhu Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 75124-75135
标识
DOI:10.1109/access.2024.3404462
摘要

One crucial problem with intelligent driving systems is 3D target detection. Point cloud data has several uses in the realm of perception and is a vital source of information. To improve the accuracy and robustness of target detection, the study designed a point cloud columnarized network structure based on the PointPillars algorithm. This structure reduces the dimensionality and noise of the data and improves the efficiency of target detection. The Swin Transformer algorithm is utilized to enhance the network structure, enabling the utilization of spatial information from point cloud data for precise detection and localization of 3D targets. The results indicated that the improved model predicted frames and real frames had smaller offset angles and smaller errors, and fit better compared to the PointPillars algorithm. The memory usage of the improved model graphics card was 1253MB, and the running speed was 0.033s, compared with the PointPillars algorithm the memory usage of the graphics card was reduced by 14MB, and the running speed was improved by 0.003s. The first 0.03s of the target detection of the PointPillars model had the most deviation, and the deviation was generally 0.03m. The reason was that PointPillars algorithm is not capable of handling occlusion, small or dense targets well enough to produce errors.The detection error distribution of the improved model was concentrated around 0.01s, and the average deviation was 0.018m, which reduced the deviation by nearly 55.7% compared to the PointPillars model. The enhanced technique enhances the driving system's safety and perception capacity while precisely identifying target items on the road. This is of great significance to promote the development and practical application of intelligent driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biom完成签到 ,获得积分10
4秒前
cxlhzq完成签到,获得积分10
13秒前
宁静致远完成签到,获得积分10
19秒前
虞无声发布了新的文献求助50
21秒前
开心的短靴完成签到 ,获得积分10
24秒前
天涯倦客完成签到,获得积分10
29秒前
严剑封完成签到,获得积分10
36秒前
41秒前
俊逸书琴完成签到 ,获得积分10
59秒前
小小小曾啊啊啊啊完成签到,获得积分10
59秒前
萧然完成签到,获得积分10
1分钟前
guo完成签到 ,获得积分10
1分钟前
Yolenders完成签到 ,获得积分10
1分钟前
体贴问丝完成签到 ,获得积分10
1分钟前
Huck完成签到,获得积分10
1分钟前
1分钟前
艾比西地完成签到 ,获得积分10
1分钟前
何珺完成签到 ,获得积分10
1分钟前
俭朴的大有完成签到,获得积分10
1分钟前
科研混子完成签到 ,获得积分10
1分钟前
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
jychen85完成签到 ,获得积分10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
留下记忆完成签到 ,获得积分10
2分钟前
luckweb完成签到,获得积分10
2分钟前
yw完成签到 ,获得积分10
2分钟前
2分钟前
蓝绝发布了新的文献求助10
2分钟前
菠萝完成签到 ,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
李白白完成签到,获得积分10
2分钟前
科研通AI2S应助李白白采纳,获得10
2分钟前
紫熊发布了新的文献求助10
2分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111635
求助须知:如何正确求助?哪些是违规求助? 2761773
关于积分的说明 7667236
捐赠科研通 2416791
什么是DOI,文献DOI怎么找? 1282920
科研通“疑难数据库(出版商)”最低求助积分说明 619187
版权声明 599499