Improving unbalanced image classification through fine-tuning method of reinforcement learning

强化学习 计算机科学 人工智能 图像(数学) 钢筋 机器学习 模式识别(心理学) 上下文图像分类 材料科学 复合材料
作者
Jinqiang Wang,Lan Guo,Yuanbo Jiang,S. Zhang,Qingguo Zhou
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111841-111841
标识
DOI:10.1016/j.asoc.2024.111841
摘要

Image classification, especially unbalanced image classification, holds considerable promise for practical applications. Existing research focuses mainly on enhancing the effectiveness of classifiers through approaches such as data resampling and loss function adjustments. To date, most of the approaches address the class unbalanced issue by transforming unbalanced data distributions into balanced [id=SecondEdit]ones. Consequently, a critical challenge is to directly develop high-performance classifiers that are adaptive to diverse unbalanced data distributions. In this paper, for unbalanced image classification tasks, we propose a Reinforcement Learning Fine-tuning approach to Unbalanced image Classification (RLF-UC). Specifically, we train classification pretraining models on [d=FirstEdit]fivethree unbalanced datasetsid=SecondEdit], and train [d=FirstEdit]the correspondinga reward function model designed to optimize fine-tuning policy. Then, we train a reinforcement learning fine-tuning classification model and optimize its policy to maximize the cumulative expected reward. Finally, we guide the model to prioritize minority category knowledge and incorporate distribution distance constraints, which are derived from the disparities between the [d=SecondEdit]pre-trainedpretrained model and the fine-tuning model to dynamically adjust the fine-tuning classifier model. Experimental results on [d=FirstEdit]fivethree reprocessed unbalanced image datasets demonstrate that our RLF-UC method provides comparable or better classification and generalization capabilities than other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搜集达人应助淡淡采白采纳,获得10
2秒前
高高代珊完成签到 ,获得积分10
3秒前
gmc发布了新的文献求助10
4秒前
4秒前
5秒前
善学以致用应助Mian采纳,获得10
5秒前
学科共进发布了新的文献求助60
6秒前
LWJ完成签到 ,获得积分10
6秒前
6秒前
缓慢的糖豆完成签到,获得积分10
7秒前
阉太狼完成签到,获得积分10
7秒前
8秒前
soory完成签到,获得积分10
9秒前
任性的傲柏完成签到,获得积分10
9秒前
lwk205完成签到,获得积分0
9秒前
10秒前
一一完成签到,获得积分10
10秒前
10秒前
10秒前
高中生完成签到,获得积分10
11秒前
11秒前
11秒前
希望天下0贩的0应助TT采纳,获得10
12秒前
xxegt完成签到 ,获得积分10
12秒前
13秒前
爱吃泡芙发布了新的文献求助10
13秒前
susu完成签到,获得积分10
15秒前
会神发布了新的文献求助10
15秒前
KK完成签到,获得积分10
16秒前
充电宝应助justin采纳,获得10
18秒前
19秒前
Ch完成签到 ,获得积分10
20秒前
22秒前
ajun完成签到,获得积分10
22秒前
22秒前
春江完成签到,获得积分10
22秒前
22秒前
漂亮的松思完成签到,获得积分20
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808