清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving unbalanced image classification through fine-tuning method of reinforcement learning

强化学习 计算机科学 人工智能 图像(数学) 钢筋 机器学习 模式识别(心理学) 上下文图像分类 材料科学 复合材料
作者
Jinqiang Wang,Lan Guo,Yuanbo Jiang,S. Zhang,Qingguo Zhou
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111841-111841
标识
DOI:10.1016/j.asoc.2024.111841
摘要

Image classification, especially unbalanced image classification, holds considerable promise for practical applications. Existing research focuses mainly on enhancing the effectiveness of classifiers through approaches such as data resampling and loss function adjustments. To date, most of the approaches address the class unbalanced issue by transforming unbalanced data distributions into balanced [id=SecondEdit]ones. Consequently, a critical challenge is to directly develop high-performance classifiers that are adaptive to diverse unbalanced data distributions. In this paper, for unbalanced image classification tasks, we propose a Reinforcement Learning Fine-tuning approach to Unbalanced image Classification (RLF-UC). Specifically, we train classification pretraining models on [d=FirstEdit]fivethree unbalanced datasetsid=SecondEdit], and train [d=FirstEdit]the correspondinga reward function model designed to optimize fine-tuning policy. Then, we train a reinforcement learning fine-tuning classification model and optimize its policy to maximize the cumulative expected reward. Finally, we guide the model to prioritize minority category knowledge and incorporate distribution distance constraints, which are derived from the disparities between the [d=SecondEdit]pre-trainedpretrained model and the fine-tuning model to dynamically adjust the fine-tuning classifier model. Experimental results on [d=FirstEdit]fivethree reprocessed unbalanced image datasets demonstrate that our RLF-UC method provides comparable or better classification and generalization capabilities than other baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
开放青旋应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
34秒前
44秒前
勤奋流沙完成签到 ,获得积分10
50秒前
朴素海亦完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
2分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
香蕉觅云应助huenguyenvan采纳,获得10
3分钟前
李健应助阿萨卡先生采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Ava应助阿萨卡先生采纳,获得10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
4分钟前
李剑鸿完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210