铌酸锂
材料科学
多路复用器
解复用器
制作
光电子学
宽带
带宽(计算)
多路复用
光学
计算机科学
电信
物理
医学
病理
替代医学
作者
Wanghua Zhu,Chunyu Deng,Dongyu Wang,Qichao Wang,Yaohui Sun,Jin Wang,Binfeng Yun,Yiping Cui,Guohua Hu
出处
期刊:ACS Photonics
[American Chemical Society]
日期:2024-06-11
卷期号:11 (7): 2700-2706
标识
DOI:10.1021/acsphotonics.4c00511
摘要
The lithium-niobate-on-insulator (LNOI) platform has recently emerged as a promising candidate for advanced photonic functions due to its excellent electro-optic coefficient. However, there remain some challenges associated with the etching of LNOI, which typically results in a decreased performance of the fabricated devices. For instance, fabrication errors may reduce the bandwidth of the mode multiplexer and demultiplexer (MMUX/DEMMUX), thereby limiting the capacity of the communication transmission. In this study, a four-channel broadband MMUX/DEMMUX based on an LNOI strip waveguide is experimentally demonstrated by employing an asymmetrical directional coupler structure. To avoid phase mismatch caused by etching depth error, an LNOI strip waveguide was introduced instead of a ridge waveguide. Additionally, an auxiliary spiral loss line was introduced to consume the residual energy of incomplete coupling due to fabrication error and ensure the low crosstalk of the device. Experimental results show that the device achieves a bandwidth exceeding 130 nm with a crosstalk of less than −10.6 dB, making it achieve the largest multiplexing bandwidth reported for LNOI-based platforms. Furthermore, a clear eye diagram at 64 Gbps demonstrates the capability for the high-speed communication offered by the fabricated device.
科研通智能强力驱动
Strongly Powered by AbleSci AI