加速度
计算机科学
推论
故障检测与隔离
断层(地质)
人工智能
物理
地质学
经典力学
地震学
执行机构
作者
Hari Teja Charakanam,Indira Damarla,Madhu Kumar Kosuri,Abhishek Arya Ramisetti,Hima Chowdary Potluri
标识
DOI:10.1109/icdcece60827.2024.10549684
摘要
The demand for high-quality printed circuit boards (PCBs) necessitates rigorous fault detection to ensure product reliability, particularly considering the susceptibility of PCBs to connection issues in harsh environmental conditions. This paper presents a real-time fault detection system for PCBs utilizing the YOLOv8 object detection framework. A native YOLOv8 implementation is employed for model training, fine-tuning it on a custom PCB fault dataset to achieve precise detection of various defect types. Additionally, the trained model is optimized using NVIDIA's TensorRT framework, significantly enhancing inference speed. This approach enables the integration of high-performance, deep learning-based fault detection into resource-constrained PCB production environments, demonstrating superior accuracy and efficiency compared to traditional inspection methods. This advancement facilitates cost-effective quality control in PCB manufacturing. By showcasing the effectiveness of employing YOLOv8 and TensorRT for real-time fault detection in PCB manufacturing, the research underscores the importance of timely defect detection in ensuring the reliability and quality of electronic devices PCBs, representing a significant step forward in industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI