桥(图论)
人工神经网络
功能(生物学)
计算机科学
结构工程
工程类
算法
人工智能
医学
进化生物学
内科学
生物
作者
Chenxi Xing,Xu Zhou,Hao Wang
标识
DOI:10.1177/13694332241260140
摘要
To rapidly and effectively assess the bridge seismic-resistant capability, it is essential to conduct efficient predictions of bridge seismic responses. Recently, physics informed neural network (PINN) has made great progress and utilized to solve differential equations in different fields. However, how to increase its accuracy and efficiency still remains an open challenge. In this work, a novel gradient-enhanced Fourth-Order Runge-Kutta PINN (gRK4-PINN), as a powerful hybrid PINN, is utilized to achieve this goal. As for gRK4-PINN, the physical information is not simply embedded into the loss function; instead, the RK4 method and the physical model is intricately integrated with the neural network. In addition, to improve the predictive performance, additional gradient equation is directly embedded in loss function. A large-span continuous girder high speed railway (CGHSR) bridge is adopted as numerical experiment to validate the fidelity of the proposed method. Results reveal that the Mean Absolute Error (MAE) of the predicting seismic responses is relatively small, whose value is below 0.014 in most of the time. These small MAE values indicate that the proposed gRK4-PINN performs well in predicting the seismic responses of the CGHSR bridge.
科研通智能强力驱动
Strongly Powered by AbleSci AI