亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on haze prediction method of Xianyang City based on STL decomposition and FEDformer

薄雾 计算机科学 空气质量指数 空气污染指数 时间序列 大数据 分解 质量(理念) 空气污染 预测建模 数据挖掘 机器学习 人工智能 气象学 物理 生态学 认识论 哲学 生物 有机化学 化学
作者
Yanan Cao,Qian Zhou,Jinglei Tang,Zhenhong Liu
标识
DOI:10.1117/12.3031964
摘要

Due to the continuous impact of haze weather, Xianyang city's air quality has ranked in the bottom three of the province for three consecutive years. This has led to an urgent need to improve air quality. Haze pollution prediction is of great practical significance. By timely and accurate prediction of haze pollution, the government and relevant institutions can take necessary measures to improve air quality and protect the ecosystem. Although the traditional RNN and LSTM models can effectively capture the time sequence information in the haze data over the years for prediction, it is still difficult to achieve accurate prediction due to the complexity of haze prediction. In this study, 8769 pieces of heterogeneous data were successfully collected using multi-source big data acquisition technology. A series of pre-processing operations, including data conversion and dimensionality reduction, were performed on different data such as AQI, PM2.5, PM10, SO2, NO2, CO and O3. The method of big data fusion and deep learning is adopted to integrate haze data and discover hidden rules and trends in it. Finally, based on FEDformer model and STL time series decomposition method, the prediction model was established in this study, which achieved significant improvement in both short - and long-term time series prediction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助贪玩的无招采纳,获得10
刚刚
棒棒糖完成签到 ,获得积分10
5秒前
夏色弥深完成签到 ,获得积分10
8秒前
蟹黄味完成签到 ,获得积分10
9秒前
11秒前
13秒前
17秒前
吉他独奏手完成签到,获得积分10
18秒前
19秒前
22秒前
搜集达人应助小明采纳,获得10
24秒前
24秒前
Charles完成签到,获得积分0
26秒前
27秒前
27秒前
null应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
hanzhiyuxing发布了新的文献求助10
29秒前
熱風完成签到 ,获得积分10
34秒前
37秒前
健壮的尔烟完成签到,获得积分10
39秒前
白日梦想家完成签到 ,获得积分10
40秒前
41秒前
42秒前
hanzhiyuxing完成签到,获得积分10
44秒前
Ayra发布了新的文献求助30
46秒前
因韦热爱完成签到 ,获得积分10
54秒前
香蕉觅云应助Ayra采纳,获得10
55秒前
57秒前
haha完成签到 ,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
稳重的千凝完成签到 ,获得积分10
1分钟前
野性的柠檬完成签到,获得积分10
1分钟前
1分钟前
yuqinghui98完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
医门深似海完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
健壮的鑫鹏完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849648
求助须知:如何正确求助?哪些是违规求助? 6250298
关于积分的说明 15624584
捐赠科研通 4966024
什么是DOI,文献DOI怎么找? 2677742
邀请新用户注册赠送积分活动 1622045
关于科研通互助平台的介绍 1578105