A hierarchical Bayesian model updating method for bridge structures by fusing multi-source information

结构健康监测 计算机科学 情态动词 偏转(物理) 振动 贝叶斯概率 有限元法 数据挖掘 结构工程 工程类 人工智能 化学 物理 光学 量子力学 高分子化学
作者
Lanxin Luo,Mingming Song,Yixian Li,Limin Sun
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/14759217241253361
摘要

The expanding structural health monitoring (SHM) systems on bridge structures have provided an abundance of multi-source data for finite element model updating (FEMU). The SHM systems on bridges usually include surveillance cameras, vibration sensors (e.g., accelerometers, strain gauges, and displacement sensors), and sometimes a weight-in-motion (WIM) system. Currently, the majority of FEMU studies focus on identified modal parameters derived from vibration data, neglecting the incorporation of video and WIM data in the updating process, which impedes a thorough quantification of uncertainty associated with the structural parameters of interest. Therefore, this paper proposes a hierarchical Bayesian FEMU framework to comprehensively integrate a variety of information sources, including videos, WIM, and vibration data. The data features comprise the static deflections of the bridge under traffic load and modal parameters identified from acceleration measurements. The measured static deflections are extracted from raw displacement data using the locally weighted regression and smoothing scatterplots method. Computer vision-based technology is employed to pinpoint the location of vehicle load on the bridge, which is then integrated into a FEM to predict vehicle-load-induced static deflection. A two-stage Markov Chain Monte Carlo sampling approach is proposed to evaluate the high-dimensional posterior distribution efficiently. The effectiveness of the proposed method is demonstrated on a laboratory three-span bridge model. The results show that the hierarchical Bayesian FEMU can provide accurate estimation and uncertainty quantification on structural stiffness and mass parameters. The updated model accurately predicts both static deflection and modal parameters, exhibiting model-predicted variability in close alignment with the identified values for observed and unobserved responses. Remarkably, this holds true even for unseen loading conditions which are not included in the updating process. These observations validate the capability of the proposed method for multi-source data fusion and uncertainty quantification of real-world bridge structures under operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巫发布了新的文献求助10
刚刚
周娅敏发布了新的文献求助10
1秒前
华仔应助答辩采纳,获得10
1秒前
caixiayin发布了新的文献求助10
1秒前
1秒前
威武的冷风关注了科研通微信公众号
2秒前
2秒前
2秒前
2秒前
3秒前
科研通AI2S应助奋斗若风采纳,获得10
3秒前
ly发布了新的文献求助10
3秒前
4秒前
xiang完成签到,获得积分10
4秒前
李爱国应助迷恋采纳,获得10
4秒前
在摆烂的dog完成签到,获得积分10
5秒前
星辰大海应助刘源采纳,获得10
5秒前
小巫完成签到,获得积分10
6秒前
ironsilica完成签到,获得积分10
6秒前
土豪的土豆完成签到 ,获得积分10
6秒前
orixero应助风趣的鸡翅采纳,获得10
7秒前
独步旋碟发布了新的文献求助10
7秒前
prime完成签到,获得积分10
7秒前
李木子完成签到 ,获得积分10
7秒前
7秒前
林登万完成签到,获得积分10
7秒前
hj木秀于林完成签到,获得积分10
7秒前
9秒前
风华正茂发布了新的文献求助10
9秒前
9秒前
SOO应助sx采纳,获得10
10秒前
Superman完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
916应助科研通管家采纳,获得10
13秒前
坦率的匪应助科研通管家采纳,获得10
13秒前
十二应助科研通管家采纳,获得10
13秒前
yar应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650