A hierarchical Bayesian model updating method for bridge structures by fusing multi-source information

结构健康监测 计算机科学 情态动词 偏转(物理) 振动 贝叶斯概率 有限元法 数据挖掘 结构工程 工程类 人工智能 化学 物理 光学 量子力学 高分子化学
作者
Lanxin Luo,Mingming Song,Yixian Li,Limin Sun
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241253361
摘要

The expanding structural health monitoring (SHM) systems on bridge structures have provided an abundance of multi-source data for finite element model updating (FEMU). The SHM systems on bridges usually include surveillance cameras, vibration sensors (e.g., accelerometers, strain gauges, and displacement sensors), and sometimes a weight-in-motion (WIM) system. Currently, the majority of FEMU studies focus on identified modal parameters derived from vibration data, neglecting the incorporation of video and WIM data in the updating process, which impedes a thorough quantification of uncertainty associated with the structural parameters of interest. Therefore, this paper proposes a hierarchical Bayesian FEMU framework to comprehensively integrate a variety of information sources, including videos, WIM, and vibration data. The data features comprise the static deflections of the bridge under traffic load and modal parameters identified from acceleration measurements. The measured static deflections are extracted from raw displacement data using the locally weighted regression and smoothing scatterplots method. Computer vision-based technology is employed to pinpoint the location of vehicle load on the bridge, which is then integrated into a FEM to predict vehicle-load-induced static deflection. A two-stage Markov Chain Monte Carlo sampling approach is proposed to evaluate the high-dimensional posterior distribution efficiently. The effectiveness of the proposed method is demonstrated on a laboratory three-span bridge model. The results show that the hierarchical Bayesian FEMU can provide accurate estimation and uncertainty quantification on structural stiffness and mass parameters. The updated model accurately predicts both static deflection and modal parameters, exhibiting model-predicted variability in close alignment with the identified values for observed and unobserved responses. Remarkably, this holds true even for unseen loading conditions which are not included in the updating process. These observations validate the capability of the proposed method for multi-source data fusion and uncertainty quantification of real-world bridge structures under operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布莱橙发布了新的文献求助10
刚刚
菲菲发布了新的文献求助10
1秒前
qing1245完成签到,获得积分10
1秒前
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
Sir.夏季风发布了新的文献求助10
6秒前
6秒前
大模型应助快乐杰克采纳,获得10
7秒前
贪玩的白玉完成签到,获得积分10
8秒前
kissjo完成签到,获得积分10
8秒前
婷小胖发布了新的文献求助30
8秒前
9秒前
Shawn_54完成签到,获得积分10
9秒前
YangSY完成签到,获得积分10
10秒前
立青发布了新的文献求助10
11秒前
郑麻发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
lingmuhuahua发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
18秒前
BBQ发布了新的文献求助10
19秒前
歪瑞古德发布了新的文献求助30
20秒前
在水一方应助菲菲采纳,获得10
20秒前
小金的小天使i完成签到,获得积分10
21秒前
mxl完成签到,获得积分10
21秒前
Jasper应助Siqing采纳,获得10
22秒前
xiangyiyi发布了新的文献求助10
22秒前
JamesPei应助迷路毛豆采纳,获得10
22秒前
嗯哼应助言余采纳,获得500
23秒前
hredy完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243808
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249384
捐赠科研通 2556359
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625794