A hierarchical Bayesian model updating method for bridge structures by fusing multi-source information

结构健康监测 计算机科学 情态动词 偏转(物理) 振动 贝叶斯概率 有限元法 数据挖掘 结构工程 工程类 人工智能 量子力学 光学 物理 化学 高分子化学
作者
Lanxin Luo,Mingming Song,Yixian Li,Limin Sun
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/14759217241253361
摘要

The expanding structural health monitoring (SHM) systems on bridge structures have provided an abundance of multi-source data for finite element model updating (FEMU). The SHM systems on bridges usually include surveillance cameras, vibration sensors (e.g., accelerometers, strain gauges, and displacement sensors), and sometimes a weight-in-motion (WIM) system. Currently, the majority of FEMU studies focus on identified modal parameters derived from vibration data, neglecting the incorporation of video and WIM data in the updating process, which impedes a thorough quantification of uncertainty associated with the structural parameters of interest. Therefore, this paper proposes a hierarchical Bayesian FEMU framework to comprehensively integrate a variety of information sources, including videos, WIM, and vibration data. The data features comprise the static deflections of the bridge under traffic load and modal parameters identified from acceleration measurements. The measured static deflections are extracted from raw displacement data using the locally weighted regression and smoothing scatterplots method. Computer vision-based technology is employed to pinpoint the location of vehicle load on the bridge, which is then integrated into a FEM to predict vehicle-load-induced static deflection. A two-stage Markov Chain Monte Carlo sampling approach is proposed to evaluate the high-dimensional posterior distribution efficiently. The effectiveness of the proposed method is demonstrated on a laboratory three-span bridge model. The results show that the hierarchical Bayesian FEMU can provide accurate estimation and uncertainty quantification on structural stiffness and mass parameters. The updated model accurately predicts both static deflection and modal parameters, exhibiting model-predicted variability in close alignment with the identified values for observed and unobserved responses. Remarkably, this holds true even for unseen loading conditions which are not included in the updating process. These observations validate the capability of the proposed method for multi-source data fusion and uncertainty quantification of real-world bridge structures under operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SallyLuo完成签到,获得积分10
刚刚
1秒前
fdawn完成签到,获得积分10
1秒前
旺仔糖完成签到,获得积分20
2秒前
上官若男应助闹心采纳,获得10
3秒前
量子星尘发布了新的文献求助150
3秒前
大米发布了新的文献求助30
3秒前
秋风暖暖发布了新的文献求助10
4秒前
爆米花应助萧萧萧采纳,获得10
5秒前
微笑不可完成签到 ,获得积分10
5秒前
带着太阳去旅行完成签到,获得积分20
5秒前
千日粉发布了新的文献求助10
6秒前
6秒前
edtaa完成签到,获得积分10
7秒前
天天开心完成签到,获得积分10
7秒前
漱泉枕石发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
xu完成签到,获得积分20
9秒前
bob完成签到,获得积分10
12秒前
12秒前
田様应助鲤鱼烙采纳,获得10
13秒前
Sea_U应助Sylvie采纳,获得10
13秒前
张立敏发布了新的文献求助10
14秒前
淼队发布了新的文献求助10
14秒前
共享精神应助千日粉采纳,获得10
15秒前
长情萤发布了新的文献求助10
15秒前
15秒前
WIK发布了新的文献求助20
18秒前
18秒前
KBRS完成签到,获得积分10
18秒前
暮倦完成签到,获得积分20
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
lynn221204完成签到,获得积分10
21秒前
LIHONGJIE完成签到,获得积分20
21秒前
zhangxuhns发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599