Dual Information Enhanced Multiview Attributed Graph Clustering

聚类分析 计算机科学 图形 人工智能 模式识别(心理学) 数据挖掘 图划分 代表(政治) 理论计算机科学 政治学 政治 法学
作者
Jiaqi Lin,Man-Sheng Chen,Xi-Ran Zhu,Chang‐Dong Wang,Haizhang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2024.3401449
摘要

Multiview attributed graph clustering is an important approach to partition multiview data based on the attribute characteristics and adjacent matrices from different views. Some attempts have been made in using graph neural network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel dual information enhanced multiview attributed graph clustering (DIAGC) method is proposed in this article. Specifically, the proposed method introduces the specific information reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables graph convolutional network (GCN) to capture the more essential low-level representations. Besides, the contrastive learning (CL) module maximizes the agreement between the latent high-level representation and low-level ones and enables the high-level representation to satisfy the desired clustering structure with the help of the self-supervised clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小离发布了新的文献求助10
1秒前
yug完成签到,获得积分10
1秒前
坟里唱情歌完成签到 ,获得积分10
2秒前
kbj完成签到,获得积分10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
科研雷锋发布了新的文献求助10
3秒前
gen完成签到,获得积分10
3秒前
简单的丑完成签到,获得积分10
4秒前
今后应助日天的马铃薯采纳,获得10
4秒前
4秒前
4秒前
我是老大应助Ll采纳,获得10
4秒前
Lance先生完成签到,获得积分10
4秒前
5秒前
ChangSZ完成签到,获得积分10
5秒前
日月山河永在完成签到,获得积分10
5秒前
甜蜜英姑完成签到,获得积分10
6秒前
6秒前
怕黑向秋完成签到,获得积分10
6秒前
6秒前
852应助waq采纳,获得10
7秒前
海鸥海鸥完成签到,获得积分10
7秒前
7秒前
笑点低蜜蜂完成签到,获得积分10
7秒前
nana完成签到,获得积分10
7秒前
xiaoxiao完成签到,获得积分10
7秒前
顺心迎南发布了新的文献求助10
7秒前
8秒前
8秒前
xhy发布了新的文献求助10
8秒前
library2025完成签到,获得积分10
8秒前
FashionBoy应助宋十一采纳,获得10
8秒前
8秒前
有魅力哈密瓜完成签到,获得积分10
9秒前
gougoudy完成签到,获得积分20
9秒前
吃面包的熊猫完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672