Contributions Estimation in Federated Learning: A Comprehensive Experimental Evaluation

计算机科学 稳健性(进化) 利用 激励 联合学习 估计 机器学习 数据科学 数据挖掘 人工智能 风险分析(工程) 计算机安全 系统工程 工程类 医学 生物化学 化学 经济 基因 微观经济学
作者
Yiwei Chen,Kaiyu Li,Guoliang Li,Yong Wang
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:17 (8): 2077-2090
标识
DOI:10.14778/3659437.3659459
摘要

Federated Learning (FL) provides a privacy-preserving and decentralized approach to collaborative machine learning for multiple FL clients. The contribution estimation mechanism in FL is extensively studied within the database community, which aims to compute fair and reasonable contribution scores as incentives to motivate FL clients. However, designing such methods involves challenges in three aspects: effectiveness, robustness, and efficiency. Firstly, contribution estimation methods should utilize the data utility information of various client coalitions rather than that of individual clients to ensure effectiveness. Secondly, we should beware of adverse clients who may exploit tactics like data replication or label flipping. Thirdly, estimating contribution in FL can be time-consuming due to enumerating various client coalitions. Despite numerous proposed methods to address these challenges, each possesses distinct advantages and limitations based on specific settings. However, existing methods have yet to be thoroughly evaluated and compared in the same experimental framework. Therefore, a unified and comprehensive evaluation framework is necessary to compare these methods under the same experimental settings. This paper conducts an extensive survey of contribution estimation methods in FL and introduces a comprehensive framework to evaluate their effectiveness, robustness, and efficiency. Through empirical results, we present extensive observations, valuable discoveries, and an adaptable testing framework that can facilitate future research in designing and evaluating contribution estimation methods in FL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪慧可愁关注了科研通微信公众号
刚刚
科研通AI2S应助窦窦采纳,获得10
1秒前
笑笑丶不爱笑完成签到,获得积分10
1秒前
积极干饭完成签到 ,获得积分10
2秒前
JamesPei应助谦让友绿采纳,获得10
2秒前
3秒前
俞木逢朝发布了新的文献求助10
3秒前
lucky发布了新的文献求助10
3秒前
不加盐发布了新的文献求助10
4秒前
TTTaT完成签到,获得积分10
5秒前
木棉发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得20
8秒前
Alvin完成签到,获得积分10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助喵喵采纳,获得10
9秒前
dejavu完成签到,获得积分10
10秒前
tuanheqi应助萧水白采纳,获得100
11秒前
meina发布了新的文献求助10
12秒前
13秒前
lucky完成签到,获得积分20
13秒前
一区哥完成签到,获得积分10
14秒前
16秒前
咱不吃葱完成签到,获得积分10
16秒前
汉堡包应助joxes采纳,获得10
16秒前
yhb发布了新的文献求助10
17秒前
窦窦发布了新的文献求助10
18秒前
桃大屁完成签到,获得积分10
18秒前
19秒前
21秒前
Soso发布了新的文献求助10
22秒前
xiaosuda75发布了新的文献求助10
22秒前
烟花应助Lois采纳,获得30
22秒前
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613