Contributions Estimation in Federated Learning: A Comprehensive Experimental Evaluation

计算机科学 稳健性(进化) 利用 激励 联合学习 估计 机器学习 数据科学 数据挖掘 人工智能 风险分析(工程) 计算机安全 系统工程 基因 工程类 经济 医学 微观经济学 化学 生物化学
作者
Yiwei Chen,Kaiyu Li,Guoliang Li,Yong Wang
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:17 (8): 2077-2090
标识
DOI:10.14778/3659437.3659459
摘要

Federated Learning (FL) provides a privacy-preserving and decentralized approach to collaborative machine learning for multiple FL clients. The contribution estimation mechanism in FL is extensively studied within the database community, which aims to compute fair and reasonable contribution scores as incentives to motivate FL clients. However, designing such methods involves challenges in three aspects: effectiveness, robustness, and efficiency. Firstly, contribution estimation methods should utilize the data utility information of various client coalitions rather than that of individual clients to ensure effectiveness. Secondly, we should beware of adverse clients who may exploit tactics like data replication or label flipping. Thirdly, estimating contribution in FL can be time-consuming due to enumerating various client coalitions. Despite numerous proposed methods to address these challenges, each possesses distinct advantages and limitations based on specific settings. However, existing methods have yet to be thoroughly evaluated and compared in the same experimental framework. Therefore, a unified and comprehensive evaluation framework is necessary to compare these methods under the same experimental settings. This paper conducts an extensive survey of contribution estimation methods in FL and introduces a comprehensive framework to evaluate their effectiveness, robustness, and efficiency. Through empirical results, we present extensive observations, valuable discoveries, and an adaptable testing framework that can facilitate future research in designing and evaluating contribution estimation methods in FL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
ZeKaWa应助张zhang采纳,获得10
2秒前
panbl451245完成签到,获得积分20
5秒前
5秒前
6秒前
7秒前
小彭陪小崔读个研完成签到 ,获得积分10
9秒前
9秒前
panbl451245发布了新的文献求助10
9秒前
侯_发布了新的文献求助10
11秒前
852应助禹代秋采纳,获得10
11秒前
科研通AI6应助李洪卓采纳,获得10
11秒前
小刘恨香菜完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
12发布了新的文献求助10
18秒前
浮游应助苗笑卉采纳,获得10
19秒前
wonder123发布了新的文献求助10
21秒前
李天王发布了新的文献求助10
21秒前
12完成签到 ,获得积分10
21秒前
以七完成签到 ,获得积分10
22秒前
沉默碧琴完成签到,获得积分20
23秒前
23秒前
于雅霏完成签到,获得积分10
24秒前
kai完成签到,获得积分20
25秒前
27秒前
shuyingRen完成签到,获得积分10
31秒前
科研通AI2S应助李天王采纳,获得10
31秒前
chenzhi发布了新的文献求助10
32秒前
Owen应助Robot采纳,获得10
32秒前
完美世界应助山茱萸采纳,获得10
34秒前
弹指一挥间完成签到,获得积分10
37秒前
12完成签到,获得积分10
39秒前
所所应助chenzhi采纳,获得10
40秒前
40秒前
星辰大海应助桃桃桃桃采纳,获得30
42秒前
山茱萸完成签到,获得积分10
43秒前
山茱萸发布了新的文献求助10
46秒前
Verity应助DIUI采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915