Contributions Estimation in Federated Learning: A Comprehensive Experimental Evaluation

计算机科学 稳健性(进化) 利用 激励 联合学习 估计 机器学习 数据科学 数据挖掘 人工智能 风险分析(工程) 计算机安全 系统工程 工程类 医学 生物化学 化学 经济 基因 微观经济学
作者
Yiwei Chen,Kaiyu Li,Guoliang Li,Yong Wang
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:17 (8): 2077-2090
标识
DOI:10.14778/3659437.3659459
摘要

Federated Learning (FL) provides a privacy-preserving and decentralized approach to collaborative machine learning for multiple FL clients. The contribution estimation mechanism in FL is extensively studied within the database community, which aims to compute fair and reasonable contribution scores as incentives to motivate FL clients. However, designing such methods involves challenges in three aspects: effectiveness, robustness, and efficiency. Firstly, contribution estimation methods should utilize the data utility information of various client coalitions rather than that of individual clients to ensure effectiveness. Secondly, we should beware of adverse clients who may exploit tactics like data replication or label flipping. Thirdly, estimating contribution in FL can be time-consuming due to enumerating various client coalitions. Despite numerous proposed methods to address these challenges, each possesses distinct advantages and limitations based on specific settings. However, existing methods have yet to be thoroughly evaluated and compared in the same experimental framework. Therefore, a unified and comprehensive evaluation framework is necessary to compare these methods under the same experimental settings. This paper conducts an extensive survey of contribution estimation methods in FL and introduces a comprehensive framework to evaluate their effectiveness, robustness, and efficiency. Through empirical results, we present extensive observations, valuable discoveries, and an adaptable testing framework that can facilitate future research in designing and evaluating contribution estimation methods in FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason发布了新的文献求助10
刚刚
科研圣体发布了新的文献求助10
刚刚
搜集达人应助hkh采纳,获得10
1秒前
1秒前
1秒前
布同完成签到,获得积分10
3秒前
3秒前
小苹果完成签到,获得积分10
3秒前
大梦完成签到,获得积分10
3秒前
年少有为作曲家完成签到,获得积分10
4秒前
Jiang应助拼搏巧曼采纳,获得10
4秒前
5秒前
情怀应助扎心采纳,获得10
5秒前
淡定自中发布了新的文献求助10
6秒前
liu完成签到 ,获得积分10
6秒前
疯狂的绿蝶完成签到,获得积分10
6秒前
无情的猎豹完成签到 ,获得积分10
7秒前
ZYC007完成签到,获得积分10
7秒前
long完成签到 ,获得积分10
7秒前
7秒前
dsfsd发布了新的文献求助10
7秒前
8秒前
9秒前
Akim应助WLY采纳,获得10
9秒前
充电宝应助王叮叮采纳,获得10
10秒前
binbinbin发布了新的文献求助10
10秒前
林平之完成签到,获得积分10
10秒前
10秒前
ff完成签到,获得积分10
11秒前
xiangbobo0129发布了新的文献求助10
11秒前
番茄杀手完成签到,获得积分10
11秒前
11秒前
12秒前
沐沐溪三清完成签到,获得积分10
12秒前
神勇的雅香完成签到,获得积分0
12秒前
从容荠完成签到,获得积分10
12秒前
安澜完成签到,获得积分10
12秒前
CZN发布了新的文献求助10
13秒前
yihuifa发布了新的文献求助10
13秒前
思源应助欣慰的龙猫采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583