TTIS-YOLO: A Traffic Target Instance Segmentation Paradigm for Complex Road Scenarios

分割 计算机科学 人工智能 道路交通 计算机视觉 运输工程 工程类
作者
Wenjun Xia,Peiqing Li,Qipeng Li,Taiping Yang,Shunfeng Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105402-105402 被引量:4
标识
DOI:10.1088/1361-6501/ad5b10
摘要

Abstract The instance segmentation of traffic targets in complex road scenes is one of the most challenging tasks in autonomous driving. Unlike the bounding box localization for object detection and the category perception mask for semantic segmentation, instance segmentation requires accurate identification of each object under each category and more precise segmentation and positioning of these target objects. Although instance segmentation has apparent advantages, methods, for instance segmentation in complex road scenes, still need to be discovered. In this paper, we proposed an efficient instance segmentation method traffic target instance segmentation—YOLO (TTIS-YOLO) based on YOLOV5-7.0 for traffic object segmentation of complex road scenes. Our main work is as follows: to propose a multiscale efficient cross stage partial network module, which has fewer parameters, better cross-layer information exchange, and feature representation capabilities. Propose an efficient bidirectional cross scale connection optimization method that enables the network to perform more detailed and efficient feature fusion without losing original information, refining the mask flow. WIoU Loss is used as the loss function of positioning and segmentation, and the positioning performance of the model is effectively improved through the strategy of dynamically allocating gradient gains. Experiments have shown that our proposed TTIS-YOLO outperforms baseline models and other mainstream instances segmentation algorithms such as Mask RCNN, YOLACT, SOLO, and SOLOV2 with the highest segmentation accuracy and fastest inference speed. Our proposed TTIS-YOLO-S achieves the best balance between segmentation accuracy and inference speed. Compared to the baseline model, the AP50 and recall values on the Cityscapes validation set increased by 1.7% and 0.9%, respectively, with a parameter reduction of 20.6% and, an inference speed of 78.1fps on GeForce RTX 3090Ti. Meanwhile, TTIS-YOLO-L achieved the highest segmentation accuracy, with an AP50 value of 27%, and the model parameter quantity decreased by 35.4% compared to the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
1秒前
神勇秋蝶完成签到,获得积分10
4秒前
4秒前
4秒前
wangruiyang完成签到 ,获得积分10
5秒前
5秒前
hyzzz关注了科研通微信公众号
5秒前
科研通AI6应助沉静语蝶采纳,获得10
5秒前
祝z完成签到,获得积分20
6秒前
6秒前
小二郎应助tianzhen采纳,获得10
7秒前
7秒前
8秒前
8秒前
Seven发布了新的文献求助10
8秒前
相爱就永远在一起完成签到,获得积分10
9秒前
不倦发布了新的文献求助10
10秒前
10秒前
yqsf789发布了新的文献求助10
11秒前
Akim应助我是AY采纳,获得20
12秒前
开兴发布了新的文献求助10
13秒前
dsg完成签到 ,获得积分10
13秒前
16秒前
千里烟泼完成签到,获得积分20
17秒前
18秒前
19秒前
王俊发布了新的文献求助10
19秒前
20秒前
junzheng完成签到,获得积分10
22秒前
meng发布了新的文献求助10
23秒前
23秒前
所所应助刘小胖采纳,获得10
23秒前
23秒前
小二郎应助37采纳,获得10
24秒前
活力的问安完成签到 ,获得积分10
24秒前
june发布了新的文献求助10
25秒前
26秒前
26秒前
如意2023完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194604
求助须知:如何正确求助?哪些是违规求助? 4376857
关于积分的说明 13630554
捐赠科研通 4232015
什么是DOI,文献DOI怎么找? 2321314
邀请新用户注册赠送积分活动 1319495
关于科研通互助平台的介绍 1269832