亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TTIS-YOLO: A Traffic Target Instance Segmentation Paradigm for Complex Road Scenarios

分割 计算机科学 人工智能 道路交通 计算机视觉 运输工程 工程类
作者
Wenjun Xia,Peiqing Li,Qipeng Li,Taiping Yang,Shunfeng Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105402-105402 被引量:4
标识
DOI:10.1088/1361-6501/ad5b10
摘要

Abstract The instance segmentation of traffic targets in complex road scenes is one of the most challenging tasks in autonomous driving. Unlike the bounding box localization for object detection and the category perception mask for semantic segmentation, instance segmentation requires accurate identification of each object under each category and more precise segmentation and positioning of these target objects. Although instance segmentation has apparent advantages, methods, for instance segmentation in complex road scenes, still need to be discovered. In this paper, we proposed an efficient instance segmentation method traffic target instance segmentation—YOLO (TTIS-YOLO) based on YOLOV5-7.0 for traffic object segmentation of complex road scenes. Our main work is as follows: to propose a multiscale efficient cross stage partial network module, which has fewer parameters, better cross-layer information exchange, and feature representation capabilities. Propose an efficient bidirectional cross scale connection optimization method that enables the network to perform more detailed and efficient feature fusion without losing original information, refining the mask flow. WIoU Loss is used as the loss function of positioning and segmentation, and the positioning performance of the model is effectively improved through the strategy of dynamically allocating gradient gains. Experiments have shown that our proposed TTIS-YOLO outperforms baseline models and other mainstream instances segmentation algorithms such as Mask RCNN, YOLACT, SOLO, and SOLOV2 with the highest segmentation accuracy and fastest inference speed. Our proposed TTIS-YOLO-S achieves the best balance between segmentation accuracy and inference speed. Compared to the baseline model, the AP50 and recall values on the Cityscapes validation set increased by 1.7% and 0.9%, respectively, with a parameter reduction of 20.6% and, an inference speed of 78.1fps on GeForce RTX 3090Ti. Meanwhile, TTIS-YOLO-L achieved the highest segmentation accuracy, with an AP50 value of 27%, and the model parameter quantity decreased by 35.4% compared to the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GLv发布了新的文献求助50
4秒前
5秒前
Tatotota完成签到,获得积分20
7秒前
无心ICE发布了新的文献求助10
10秒前
luckkit完成签到 ,获得积分10
48秒前
浮名半生发布了新的文献求助10
56秒前
57秒前
58秒前
北极星完成签到,获得积分10
1分钟前
木木完成签到 ,获得积分10
1分钟前
1分钟前
power完成签到,获得积分10
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
拼搏的潘子完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得30
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Ava应助婷子采纳,获得10
1分钟前
1分钟前
负责吃饭完成签到,获得积分10
1分钟前
负责吃饭发布了新的文献求助30
1分钟前
无言完成签到,获得积分10
1分钟前
顾矜应助wind采纳,获得10
1分钟前
1分钟前
sam关闭了sam文献求助
1分钟前
1分钟前
小张完成签到 ,获得积分10
1分钟前
婷子发布了新的文献求助10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
Timon完成签到,获得积分10
1分钟前
机智觅柔完成签到 ,获得积分10
1分钟前
孤鸿.完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
wind发布了新的文献求助10
2分钟前
wind完成签到,获得积分10
2分钟前
澄明的晨星完成签到,获得积分10
2分钟前
P_Chem完成签到,获得积分10
2分钟前
光亮代玉完成签到 ,获得积分10
2分钟前
鲤鱼越越完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144954
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622