TTIS-YOLO: A Traffic Target Instance Segmentation Paradigm for Complex Road Scenarios

分割 计算机科学 人工智能 道路交通 计算机视觉 运输工程 工程类
作者
Wenjun Xia,Peiqing Li,Qipeng Li,Taiping Yang,Shunfeng Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad5b10
摘要

Abstract The instance segmentation of traffic targets in complex road scenes is one of the most challenging tasks in autonomous driving. Unlike the bounding box localization for object detection and the category perception mask for semantic segmentation, instance segmentation requires accurate identification of each object under each category and more precise segmentation and positioning of these target objects. Although instance segmentation has apparent advantages, methods, for instance segmentation in complex road scenes, still need to be discovered. In this paper, we proposed an efficient instance segmentation method TTIS-YOLO(Traffic Target Instance Segmentation - YOLO) based on YOLOV5-7.0 for traffic object segmentation of complex road scenes. Our main work is as follows: to propose a MECSP(Multiscale Efficient Cross Stage Partial Network) module, which has fewer parameters, better cross-layer information exchange, and feature representation capabilities. Propose an Efficient Bidirectional Cross Scale Connection optimization method that enables the network to perform more detailed and efficient feature fusion without losing original information, refining the mask flow. WIoU Loss is used as the loss function of positioning and segmentation, and the positioning performance of the model is effectively improved through the strategy of dynamically allocating gradient gains. Experiments have shown that our proposed TTIS-YOLO outperforms baseline models and other mainstream instances segmentation algorithms such as Mask RCNN, YOLACT, SOLO, and SOLOV2 with the highest segmentation accuracy and fastest inference speed. Our proposed TTIS-YOLO-S achieves the best balance between segmentation accuracy and inference speed. Compared to the baseline model, the AP50 and recall values on the Cityscapes validation set increased by 1.7% and 0.9%, respectively, with a parameter reduction of 20.6%, inference speed of 78.1fps on GeForce RTX 3090Ti. Meanwhile, TTIS-YOLO-L achieved the highest segmentation accuracy, with an AP50 value of 27%, and the model parameter quantity decreased by 35.4% compared to the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
4秒前
4秒前
5秒前
卷卷完成签到,获得积分10
7秒前
xueji发布了新的文献求助10
7秒前
lanrangg应助Bagpipe采纳,获得10
8秒前
8秒前
8秒前
8秒前
月月完成签到,获得积分10
8秒前
顺利的飞荷完成签到,获得积分0
10秒前
卷卷发布了新的文献求助10
10秒前
lbt1686666完成签到,获得积分10
14秒前
Crystal完成签到,获得积分10
14秒前
Co完成签到 ,获得积分10
14秒前
思源应助xiaoyi采纳,获得10
14秒前
1128完成签到 ,获得积分10
15秒前
研究生完成签到 ,获得积分10
17秒前
LEI完成签到,获得积分10
17秒前
骑着蜗牛追导弹完成签到 ,获得积分10
18秒前
18秒前
热心又蓝完成签到,获得积分10
19秒前
21秒前
DoggyBadiou完成签到,获得积分20
22秒前
西风胡杨发布了新的文献求助10
23秒前
吐车上500发布了新的文献求助10
24秒前
苏卿应助DoggyBadiou采纳,获得10
26秒前
完美的天空应助面圈采纳,获得10
26秒前
爱读文献完成签到 ,获得积分10
26秒前
科研通AI2S应助拼搏的小凝采纳,获得10
27秒前
乐乐应助xiaoyu采纳,获得10
27秒前
28秒前
烁丶完成签到 ,获得积分10
29秒前
易清华完成签到 ,获得积分10
30秒前
30秒前
Hysen_L完成签到,获得积分10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239644
求助须知:如何正确求助?哪些是违规求助? 2884916
关于积分的说明 8235903
捐赠科研通 2553111
什么是DOI,文献DOI怎么找? 1381383
科研通“疑难数据库(出版商)”最低求助积分说明 649225
邀请新用户注册赠送积分活动 624914