费托法
催化作用
碳纤维
碳链
化学
化学工程
碳氢化合物
有机化学
材料科学
选择性
复合数
工程类
复合材料
作者
Yunhao Liu,Xincheng Li,Qingpeng Cheng,Ye Tian,Yingtian Zhang,Tong Ding,Song Song,Kepeng Song,Xingang Li
标识
DOI:10.1021/acscatal.4c02979
摘要
The sintering of metal catalysts caused by Ostwald ripening (OR) and particle migration and coalescence (PMC) is one of the major challenges in heterogeneous catalysis. Here, we develop an efficient Ru catalyst supported on hydrophobic carbon-encapsulated TiO2 for Fischer–Tropsch synthesis (FTS). Combining comprehensive characterizations, we discover that hydrophobic carbon layers predominantly obstruct OR, and appropriate metal–support interactions avoid PMC. The dual effects collectively prevent the aggregation and sintering of diminutive Ru nanoparticles (NPs) during the FTS process and induce robust catalytic performance. Moreover, this unique structure exposes more Ru sites to promote CO hydrogenation and diminishes Ru-TiO2 interfaces to adsorb more *CO and fewer *H species, which facilitates the production of longer-chain hydrocarbons. Consequently, at 220 °C, our catalyst exhibits a superior turnover frequency (TOF) of 0.189 s–1 and a Ru time yield of 2.67 molCO gRu–1 h–1, surpassing those of the reported Ru-based catalysts. Simultaneously, the catalyst shows a C5+ selectivity of 85.3% and is particularly effective in producing C15+ (soft paraffin), with a selectivity of 57.3%. Our catalyst design strategy holds promise for efficient catalytic processes in various industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI