Analysis and Experimental Investigation of Powder Concentration and Stirring Velocity on Powder Mixed Electrical Discharge Machining Performance with 3D Printed Electrodes

电火花加工 电极 材料科学 机械加工 复合材料 放电 冶金 化学 物理化学
作者
Rajnitu Rakshaskar,K. Chidambaram
出处
期刊:Results in engineering [Elsevier]
卷期号:: 102450-102450
标识
DOI:10.1016/j.rineng.2024.102450
摘要

In this work, CuO mixed lemon peel dielectric is used along with the 3D printed aluminium electrodes to enhance the electrical discharge machining (EDM) performance. This work mainly focuses on improving the surface quality by optimizing the powder concentration and stirring velocity. A full factorial of 27 experiments is carried out with input parameters such as pulse off time with 3 levels (28, 58 and 98 μs), powder concentration with 3 levels (1, 2 and 3 g/L) and stirring velocity with 3 levels (900, 1800 and 2700 rpm), while keeping the current, pulse on and voltage as constant. For all trials, the output responses viz. surface roughness (SR) and material removal rate (MRR) are noted. It is evidenced that EDM performance is influenced by the stability of powder mixed dielectric. To understand the most influential input parameter and its level, analysis of variance (ANOVA) and grey relational analysis (GRA) are carried out. The output analysis exhibited that powder concentration of 2 g/L, stirring velocity of 1800 rpm and pulse off time of 28 μs as the best combination for the best quality of finish (4.72 μm) with high MRR (0.0035 g/min) than the 1 g/L PC with 900 rpm SV for the best quality finish (5.87 μm) along high MRR (0.0029 g/min) and 3 g/L PC with 2700 rpm SV for the best quality finish (5.38 μm) with high MRR (0.0030 g/min) having pulse off time of 28 μs. The experimental findings are validated with a 3D surface plot and SEM images taken on the machined surface. Also, a simulation model is built to understand the flow velocity profiles. This helps ensure the minimum stirring velocity to be maintained to enhance the stability of powder mixed dielectric.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vegetable_Dog发布了新的文献求助10
刚刚
举個栗子完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
长情小鹿发布了新的文献求助10
3秒前
lilycat完成签到 ,获得积分10
4秒前
overThat发布了新的文献求助10
4秒前
威武鸵鸟完成签到,获得积分10
5秒前
Frida发布了新的文献求助10
5秒前
小马甲应助qifeng采纳,获得10
9秒前
哈哈发布了新的文献求助10
9秒前
Frida完成签到,获得积分10
11秒前
12秒前
16秒前
gattina完成签到,获得积分10
16秒前
wty发布了新的文献求助10
16秒前
跳跃奇迹完成签到,获得积分10
17秒前
Crazyjmj发布了新的文献求助10
18秒前
烟花应助gaohigh采纳,获得10
18秒前
18秒前
拼搏的思卉完成签到,获得积分20
19秒前
科目三应助shenzhou9采纳,获得10
21秒前
wty完成签到,获得积分10
21秒前
灵巧白风发布了新的文献求助10
22秒前
做自己的太阳应助carly采纳,获得10
22秒前
24秒前
哒哒哒哒完成签到,获得积分10
25秒前
26秒前
宋博关注了科研通微信公众号
29秒前
Aryatarg完成签到,获得积分10
30秒前
卜青发布了新的文献求助10
31秒前
callmecjh发布了新的文献求助10
32秒前
科研通AI2S应助kunkun采纳,获得10
33秒前
茅十八完成签到,获得积分10
33秒前
向日葵完成签到,获得积分10
34秒前
过时的远侵关注了科研通微信公众号
37秒前
Ava应助不吃豆皮采纳,获得10
39秒前
theverve发布了新的文献求助10
40秒前
晏小敏完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464