Development and validation of a multi-parameter nomogram for venous thromboembolism in gastric cancer patients: a retrospective analysis

列线图 医学 接收机工作特性 内科学 置信区间 逻辑回归 曲线下面积 癌症 静脉血栓栓塞 入射(几何) 回顾性队列研究 外科 血栓形成 光学 物理
作者
Hang Zhou,Haike Lei,Hongpeng Zhao,Kaifeng Huang,Yundong Wang,Ruixia Hong,Jishun Huo,Li Luo,Fang Li
出处
期刊:PeerJ [PeerJ]
卷期号:12: e17527-e17527
标识
DOI:10.7717/peerj.17527
摘要

Objective Gastric cancer (GC), one of the highest venous thromboembolism (VTE) incidence rates in cancer, contributes to considerable morbidity, mortality, and, prominently, extra cost. However, up to now, there is not a high-quality VTE model to steadily predict the risk for VTE in China. Consequently, setting up a prediction model to predict the VTE risk is imperative. Methods Data from 3,092 patients from December 15, 2017, to December 31, 2022, were retrospectively analyzed. Multiple logistic regression analysis was performed to assess risk factors for GC, and a nomogram was constructed based on screened risk factors. A receiver operating curve (ROC) and calibration plot was created to evaluate the accuracy of the nomogram. Results The risk factors of suffering from VTE were older age (OR = 1.02, 95% CI [1.00–1.04]), Karnofsky Performance Status (KPS) ≥ 70 (OR = 0.45, 95% CI [0.25–0.83]), Blood transfusion (OR = 2.37, 95% CI [1.47–3.84]), advanced clinical stage (OR = 3.98, 95% CI [1.59–9.99]), central venous catheterization (CVC) (OR = 4.27, 95% CI [2.03–8.99]), operation (OR = 2.72, 95% CI [1.55–4.77]), fibrinogen degradation product (FDP) >5 µg/mL (OR = 1.92, 95% CI [1.13–3.25]), and D-dimer > 0.5 mg/L (OR = 2.50, 95% CI [1.19–5.28]). The area under the ROC curve (AUC) was 0.82 in the training set and 0.85 in the validation set. Conclusion Our prediction model can accurately predict the risk of the appearance of VTE in gastric cancer patients and can be used as a robust and efficient tool for evaluating the possibility of VTE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
美少女星星完成签到 ,获得积分10
2秒前
xiao完成签到 ,获得积分10
2秒前
研友_nVq1PL完成签到,获得积分20
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小哦嘿应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Hhh完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
eon发布了新的文献求助20
3秒前
无花果应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小哦嘿应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
平贝花应助科研通管家采纳,获得10
4秒前
4秒前
小哦嘿应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
平贝花应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
cc应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得20
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
共享精神应助缥缈傥采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
菌子锅发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176