Boosted adsorption and oxidation performances in peroxymonosulfate (PMS)-based heterogeneous fenton-like reactions via P, N co-doping strategy

吸附 兴奋剂 化学 催化作用 降级(电信) 化学工程 无机化学 材料科学 物理化学 有机化学 计算机科学 光电子学 电信 工程类
作者
Yunan Song,Yizhou Feng,Ting Wu,Rui Yang,Qiyu Shi,Yi Zhou,Zhihua Li,Weihuang Zhu
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:354: 128587-128587 被引量:33
标识
DOI:10.1016/j.seppur.2024.128587
摘要

The heterogeneous Fenton-like reactions (HTFR) have attracted considerable interest for their efficacy in degrading pollutants. However, the development of effective strategies for enhancing performance in HTFR remains a subject of ongoing research. Herein, a synergistic adsorption and oxidation-dominated process was developed to overcome the bottlenecks of peroxymonosulfate (PMS)-based HTFR in terms of mass transfer and catalyst reactivity. Heteroatom (P, N) co-doping for manganese (Mn) was employed to fabricate an efficient catalyst, Mn@5-NPC-800, which exhibited exceptional abilities of adsorption and PMS activation. The enhanced performance of HTFR was attributed to the increased specific surface area (SSA) and enhanced yields of graphitic-N/MnIII of the catalyst, which facilitated reactant enrichment and electron transfer in the delocalized conjugated area, respectively. The PMS-based HTFR induced by Mn@5-NPC-800 for pollutant removal was characterized by a synergistic adsorption and reactive oxygen species (ROS)-dominated oxidation process. DFT calculations revealed that the N, P co-doped carbon matrix (NPC) acted as a conductive bridge, significantly improving electron transfer between MnP and PMS molecule, which was identified as a key factor in governing the catalytic performance. The investigation presents a suggestive example of employing a doping strategy to create a synergistic effect of adsorption and oxidation, thereby strengthening the performance of Fenton-like reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四月是你的谎言完成签到 ,获得积分10
1秒前
王昭完成签到 ,获得积分10
2秒前
112233发布了新的文献求助20
2秒前
3秒前
3秒前
富华路完成签到,获得积分10
4秒前
4秒前
4秒前
壮观青亦完成签到 ,获得积分10
5秒前
祁问儿完成签到 ,获得积分10
6秒前
Ccccn完成签到,获得积分10
6秒前
7秒前
8秒前
不吃香菜发布了新的文献求助30
9秒前
RLV完成签到,获得积分10
9秒前
Shuaibin_Pei发布了新的文献求助10
11秒前
科研混子完成签到,获得积分10
12秒前
王志新完成签到,获得积分10
13秒前
dly7777发布了新的文献求助10
13秒前
cff完成签到,获得积分10
14秒前
老鼠咕噜发布了新的文献求助10
15秒前
leodu完成签到,获得积分10
15秒前
16秒前
zhuzhu发布了新的文献求助10
17秒前
科研通AI2S应助Shuaibin_Pei采纳,获得10
19秒前
勤恳睿渊发布了新的文献求助10
20秒前
fhbsdufh完成签到,获得积分10
20秒前
21秒前
22秒前
阳光皮带完成签到,获得积分20
23秒前
fawr完成签到 ,获得积分10
23秒前
dly7777完成签到,获得积分10
24秒前
26秒前
1234完成签到 ,获得积分10
26秒前
张然发布了新的文献求助10
26秒前
蛋妮完成签到 ,获得积分10
27秒前
panisa鹅完成签到,获得积分10
28秒前
坚强的严青完成签到,获得积分20
29秒前
春鸮鸟完成签到 ,获得积分10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511