亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
科研通AI2S应助Magali采纳,获得10
13秒前
认真又亦完成签到 ,获得积分10
14秒前
JACS完成签到,获得积分20
21秒前
23秒前
一号小玩家完成签到,获得积分10
39秒前
嘿嘿发布了新的文献求助10
39秒前
芒果好高完成签到,获得积分10
55秒前
56秒前
1分钟前
科研小白发布了新的文献求助10
1分钟前
科研小白完成签到,获得积分10
1分钟前
_十三完成签到 ,获得积分10
1分钟前
1分钟前
高大林完成签到 ,获得积分10
1分钟前
搜集达人应助21采纳,获得10
2分钟前
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
21发布了新的文献求助10
2分钟前
Lily完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
这学真难读下去完成签到,获得积分10
3分钟前
4分钟前
4分钟前
二哈啃海棠完成签到,获得积分10
4分钟前
4分钟前
辛勤的小海豚完成签到,获得积分10
4分钟前
4分钟前
高大林发布了新的文献求助10
4分钟前
penguin完成签到,获得积分10
4分钟前
4分钟前
ai zs发布了新的文献求助10
4分钟前
12完成签到,获得积分10
4分钟前
12发布了新的文献求助10
4分钟前
5分钟前
优美的冰巧完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899645
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316517
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142