FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ardejiang发布了新的文献求助10
1秒前
WSR完成签到 ,获得积分10
1秒前
猫咪乖乖爱你完成签到,获得积分10
1秒前
CHENG_2025完成签到,获得积分10
2秒前
SYLH应助聪慧小霜采纳,获得10
2秒前
一叶之秋发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
元寄灵完成签到,获得积分10
4秒前
4秒前
包子发布了新的文献求助10
4秒前
SYLH应助清秀的怀蕊采纳,获得10
4秒前
rsimap360完成签到,获得积分10
5秒前
正直的语蝶完成签到,获得积分10
5秒前
星星发布了新的文献求助10
5秒前
万能图书馆应助wusuowei采纳,获得10
6秒前
斯文败类应助xcc采纳,获得10
7秒前
kingtongx应助Lu采纳,获得10
7秒前
Jattck发布了新的文献求助30
8秒前
上官若男应助huayi采纳,获得10
9秒前
lalala发布了新的文献求助10
9秒前
Malmever发布了新的文献求助30
10秒前
ottsannn完成签到,获得积分10
10秒前
大个应助蓦然回首采纳,获得10
10秒前
Dou_Xiaowen发布了新的文献求助10
11秒前
11秒前
baobaobaozi完成签到,获得积分20
11秒前
jyy应助包子采纳,获得10
12秒前
CodeCraft应助Cc采纳,获得10
13秒前
13秒前
14秒前
16秒前
黑风小妖完成签到,获得积分10
16秒前
17秒前
17秒前
hi应助爱偷懒的猪采纳,获得10
19秒前
星星完成签到,获得积分20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836