FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
张立敏发布了新的文献求助10
1秒前
五上村雨发布了新的文献求助10
3秒前
3秒前
3秒前
先天牛马发布了新的文献求助10
4秒前
4秒前
洋子完成签到 ,获得积分10
5秒前
tzak发布了新的文献求助10
6秒前
美少女壮士完成签到,获得积分10
7秒前
马昕钰发布了新的文献求助10
7秒前
Owen应助平常的擎宇采纳,获得10
7秒前
7秒前
浮游应助景淮采纳,获得10
7秒前
7秒前
科研通AI6应助小兔叽采纳,获得10
8秒前
更深的蓝发布了新的文献求助10
8秒前
aaaaa发布了新的文献求助10
9秒前
烟花应助wangy采纳,获得10
10秒前
生动秋蝶发布了新的文献求助10
10秒前
11秒前
11秒前
丽的世界完成签到 ,获得积分10
12秒前
福林古斯完成签到 ,获得积分10
12秒前
李健的小迷弟应助嗝嗝采纳,获得10
12秒前
Miss完成签到,获得积分10
12秒前
wanci应助爱听歌的钢铁侠采纳,获得10
12秒前
勿忘发布了新的文献求助10
13秒前
tinna完成签到,获得积分10
13秒前
zhao完成签到,获得积分10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助20
14秒前
是柘啊完成签到,获得积分10
14秒前
14秒前
丘比特应助睡个好觉采纳,获得10
14秒前
14秒前
15秒前
爆米花应助猪猪hero采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956003
求助须知:如何正确求助?哪些是违规求助? 4217909
关于积分的说明 13126143
捐赠科研通 4000484
什么是DOI,文献DOI怎么找? 2189389
邀请新用户注册赠送积分活动 1204452
关于科研通互助平台的介绍 1116326