亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7851-7864 被引量:7
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
刚刚
yu完成签到,获得积分10
1秒前
罗静完成签到 ,获得积分10
3秒前
番茄炒蛋完成签到,获得积分20
5秒前
传奇3应助yu采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
myg123完成签到 ,获得积分10
8秒前
wcwpl发布了新的文献求助10
11秒前
虚拟的纸鹤完成签到 ,获得积分10
13秒前
XCY完成签到,获得积分10
16秒前
顺利的荔枝完成签到,获得积分10
20秒前
隐形蜡烛发布了新的文献求助10
23秒前
kepler完成签到,获得积分10
24秒前
领导范儿应助爱笑的幻灵采纳,获得10
24秒前
XCY发布了新的文献求助20
25秒前
25秒前
wcwpl完成签到,获得积分10
26秒前
ss发布了新的文献求助10
26秒前
冷静雨南完成签到 ,获得积分10
28秒前
Hello应助dreamboat采纳,获得10
31秒前
Freedom完成签到 ,获得积分10
31秒前
Xuan发布了新的文献求助10
31秒前
31秒前
malucia完成签到,获得积分10
35秒前
38秒前
隐形蜡烛完成签到,获得积分10
39秒前
阿幽发布了新的文献求助10
43秒前
lyh发布了新的文献求助20
43秒前
46秒前
JM完成签到,获得积分10
49秒前
赘婿应助lyh采纳,获得10
57秒前
ZJakariae发布了新的文献求助50
1分钟前
1分钟前
卷毛维安完成签到,获得积分10
1分钟前
1分钟前
sasa完成签到 ,获得积分10
1分钟前
李子敬完成签到,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595654
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817999
捐赠科研通 4651355
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503514
关于科研通互助平台的介绍 1469754