FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分10
刚刚
1秒前
生椰拿铁不加生椰完成签到 ,获得积分10
2秒前
认真的灵竹完成签到 ,获得积分10
3秒前
Zxx关注了科研通微信公众号
4秒前
4秒前
franca2005完成签到 ,获得积分10
4秒前
本末倒纸完成签到 ,获得积分10
6秒前
wbscz应助星辰采纳,获得10
6秒前
toxikon发布了新的文献求助10
7秒前
8秒前
10秒前
大模型应助剁辣椒蒸鱼头采纳,获得20
10秒前
小北完成签到 ,获得积分10
10秒前
11秒前
高挑的冰露完成签到 ,获得积分10
14秒前
ruochenzu发布了新的文献求助10
14秒前
老李完成签到,获得积分10
14秒前
15秒前
16秒前
tough_cookie完成签到 ,获得积分10
17秒前
彩钢房完成签到,获得积分10
18秒前
MeSs完成签到 ,获得积分10
19秒前
toxikon完成签到,获得积分10
20秒前
一点通完成签到,获得积分10
20秒前
Lei完成签到,获得积分10
21秒前
21秒前
21秒前
常若冰完成签到,获得积分10
21秒前
纯真的元风完成签到,获得积分10
22秒前
哇哈哈哈完成签到,获得积分10
22秒前
清秋1001完成签到 ,获得积分10
23秒前
qq完成签到,获得积分10
24秒前
荒野风发布了新的文献求助10
25秒前
Zxx发布了新的文献求助10
26秒前
27秒前
27秒前
确幸完成签到 ,获得积分10
27秒前
苒苒完成签到,获得积分10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066