FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助梁婷采纳,获得10
刚刚
Kelly1426完成签到,获得积分10
1秒前
咖喱鸡完成签到,获得积分10
2秒前
爱学习的超完成签到,获得积分10
2秒前
闫栋完成签到 ,获得积分10
3秒前
温柔梦松完成签到 ,获得积分10
4秒前
任晴完成签到,获得积分10
5秒前
小鲨鱼完成签到,获得积分10
5秒前
5秒前
happiness完成签到,获得积分10
5秒前
Aki完成签到,获得积分10
6秒前
爱撒娇的孤丹完成签到 ,获得积分10
8秒前
摇光完成签到,获得积分10
8秒前
大胆的火龙果完成签到,获得积分10
8秒前
orixero应助zxy采纳,获得10
10秒前
YOLO完成签到,获得积分10
11秒前
zzz完成签到 ,获得积分10
11秒前
11秒前
不安毛豆发布了新的文献求助10
11秒前
楚小儿完成签到 ,获得积分10
12秒前
王小小完成签到,获得积分10
14秒前
有终完成签到 ,获得积分10
15秒前
梁婷完成签到,获得积分20
15秒前
shen发布了新的文献求助10
15秒前
英姑应助小太阳采纳,获得10
16秒前
宁夕完成签到 ,获得积分10
16秒前
18秒前
哈哈发布了新的文献求助10
18秒前
热心蛋挞完成签到,获得积分10
19秒前
充电宝应助不安毛豆采纳,获得10
19秒前
比奇堡平平无奇烂虾完成签到,获得积分10
19秒前
无情的数据线完成签到,获得积分10
19秒前
Ying完成签到,获得积分10
22秒前
天道酬勤完成签到 ,获得积分10
24秒前
24秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
24秒前
zxy发布了新的文献求助10
25秒前
yuan完成签到,获得积分10
26秒前
锦诗完成签到,获得积分10
26秒前
科研通AI2S应助迷路的海云采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099839
求助须知:如何正确求助?哪些是违规求助? 2751315
关于积分的说明 7612624
捐赠科研通 2403180
什么是DOI,文献DOI怎么找? 1275200
科研通“疑难数据库(出版商)”最低求助积分说明 616295
版权声明 599053