FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7851-7864 被引量:7
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
smile完成签到,获得积分10
1秒前
黑米粥发布了新的文献求助10
2秒前
小任吃不胖完成签到,获得积分10
3秒前
3秒前
今后应助malele采纳,获得10
4秒前
Orange应助孔懿轩采纳,获得30
7秒前
AXLL完成签到 ,获得积分10
9秒前
10秒前
科研通AI6应助cherry_shengmo采纳,获得10
10秒前
11秒前
彭于晏应助丢丢银采纳,获得10
11秒前
研友_ZGRvon完成签到,获得积分0
11秒前
xuan发布了新的文献求助10
12秒前
黑米粥发布了新的文献求助10
12秒前
DrW1111发布了新的文献求助10
14秒前
14秒前
小马甲应助nieyaochi采纳,获得10
14秒前
宣登仕发布了新的文献求助10
15秒前
子怡发布了新的文献求助10
18秒前
YANG发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
ddw发布了新的文献求助10
20秒前
21秒前
黑米粥发布了新的文献求助10
23秒前
Binbin发布了新的文献求助10
24秒前
Huanghong发布了新的文献求助10
24秒前
25秒前
fwl完成签到,获得积分10
25秒前
25秒前
一口蒜苗发布了新的文献求助200
27秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
花椒鱼完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466