FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7851-7864 被引量:7
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xianao完成签到,获得积分10
刚刚
刚刚
刚刚
LLM发布了新的文献求助10
1秒前
1秒前
fengh峰发布了新的文献求助10
1秒前
2秒前
星辰大海应助翠花采纳,获得10
2秒前
2秒前
3秒前
Ma完成签到,获得积分10
3秒前
王花花发布了新的文献求助10
3秒前
4秒前
12123浪发布了新的文献求助30
4秒前
wang发布了新的文献求助10
5秒前
qwp发布了新的文献求助10
6秒前
默默发布了新的文献求助10
6秒前
8秒前
VV发布了新的文献求助30
9秒前
qian发布了新的文献求助10
9秒前
情怀应助Goooood采纳,获得10
9秒前
万能图书馆应助WWY采纳,获得10
9秒前
顾心心完成签到,获得积分10
10秒前
JamesPei应助PABBY采纳,获得10
10秒前
vickie完成签到,获得积分20
10秒前
李天磊发布了新的文献求助10
11秒前
11秒前
white发布了新的文献求助30
13秒前
ziziwang发布了新的文献求助10
13秒前
14秒前
HYJ完成签到,获得积分20
14秒前
ding应助科研通管家采纳,获得10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
谢大喵应助科研通管家采纳,获得10
15秒前
笔记本应助科研通管家采纳,获得150
15秒前
16秒前
标致若风应助科研通管家采纳,获得50
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445