FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

计算机科学 人工智能 深度学习
作者
Tianpeng Deng,Yanqi Huang,Guoqiang Han,Zhenwei Shi,Jiatai Lin,Qi Dou,Zaiyi Liu,Xiaojing Guo,C. L. Philip Chen,Chu Han
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7851-7864 被引量:7
标识
DOI:10.1109/tcyb.2024.3403927
摘要

Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上手机完成签到 ,获得积分10
2秒前
2秒前
3秒前
吉如天完成签到,获得积分10
3秒前
vz7发布了新的文献求助10
4秒前
es发布了新的文献求助10
4秒前
自信的靖儿完成签到,获得积分10
4秒前
xx完成签到,获得积分10
4秒前
Sanma发布了新的文献求助50
4秒前
yyy发布了新的文献求助10
5秒前
5秒前
carly发布了新的文献求助10
5秒前
5秒前
文献狂人完成签到,获得积分10
6秒前
丘比特应助黄紫红蓝采纳,获得10
6秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
酷波er应助橘子橘子采纳,获得10
7秒前
7秒前
2号发布了新的文献求助10
8秒前
千里江山一只蝇完成签到,获得积分10
8秒前
过时的正豪完成签到 ,获得积分10
8秒前
Yzy发布了新的文献求助10
8秒前
Yzy发布了新的文献求助10
9秒前
aafrr完成签到 ,获得积分10
9秒前
gdh发布了新的文献求助50
10秒前
Night完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
战钺蟠龙发布了新的文献求助10
10秒前
英姑应助baiyufengsheng采纳,获得10
11秒前
11秒前
11秒前
ari发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919