Bridging large language model disparities: Skill tagging of multilingual educational content

桥接(联网) 计算机科学 数学教育 心理学 计算机网络
作者
Yerin Kwak,Zachary A. Pardos
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:55 (5): 2039-2057 被引量:6
标识
DOI:10.1111/bjet.13465
摘要

Abstract The adoption of large language models (LLMs) in education holds much promise. However, like many technological innovations before them, adoption and access can often be inequitable from the outset, creating more divides than they bridge. In this paper, we explore the magnitude of the country and language divide in the leading open‐source and proprietary LLMs with respect to knowledge of K‐12 taxonomies in a variety of countries and their performance on tagging problem content with the appropriate skill from a taxonomy, an important task for aligning open educational resources and tutoring content with state curricula. We also experiment with approaches to narrowing the performance divide by enhancing LLM skill tagging performance across four countries (the USA, Ireland, South Korea and India–Maharashtra) for more equitable outcomes. We observe considerable performance disparities not only with non‐English languages but with English and non‐US taxonomies. Our findings demonstrate that fine‐tuning GPT‐3.5 with a few labelled examples can improve its proficiency in tagging problems with relevant skills or standards, even for countries and languages that are underrepresented during training. Furthermore, the fine‐tuning results show the potential viability of GPT as a multilingual skill classifier. Using both an open‐source model, Llama2‐13B, and a closed‐source model, GPT‐3.5, we also observe large disparities in tagging performance between the two and find that fine‐tuning and skill information in the prompt improve both, but the closed‐source model improves to a much greater extent. Our study contributes to the first empirical results on mitigating disparities across countries and languages with LLMs in an educational context. Practitioner notes What is already known about this topic Recent advances in generative AI have led to increased applications of LLMs in education, offering diverse opportunities. LLMs excel predominantly in English and exhibit a bias towards the US context. Automated content tagging has been studied using English‐language content and taxonomies. What this paper adds Investigates the country and language disparities in LLMs concerning knowledge of educational taxonomies and their performance in tagging content. Presents the first empirical findings on addressing disparities in LLM performance across countries and languages within an educational context. Improves GPT‐3.5's tagging accuracy through fine‐tuning, even for non‐US countries, starting from zero accuracy. Extends automated content tagging to non‐English languages using both open‐source and closed‐source LLMs. Implications for practice and/or policy Underscores the importance of considering the performance generalizability of LLMs to languages other than English. Highlights the potential viability of ChatGPT as a skill tagging classifier across countries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
馒头完成签到,获得积分10
1秒前
qhdsyxy完成签到 ,获得积分0
1秒前
时2完成签到,获得积分10
2秒前
飞快的雅青完成签到 ,获得积分20
2秒前
cuddly完成签到 ,获得积分10
3秒前
4秒前
wxs完成签到,获得积分10
5秒前
洁净的闭月完成签到,获得积分10
5秒前
和尘同光发布了新的文献求助10
6秒前
云木完成签到 ,获得积分10
8秒前
浅斟低唱发布了新的文献求助10
9秒前
科研通AI5应助和谐的蜡烛采纳,获得10
13秒前
研友_GZ3zRn完成签到 ,获得积分0
15秒前
Foura完成签到,获得积分10
16秒前
鑫光熠熠完成签到 ,获得积分10
16秒前
zhoujy完成签到,获得积分10
16秒前
今后应助浅斟低唱采纳,获得10
18秒前
Neo.H完成签到,获得积分10
20秒前
xk要发nature子刊完成签到,获得积分10
21秒前
爱学习的我完成签到 ,获得积分10
22秒前
25秒前
隔壁巷子里的劉完成签到 ,获得积分10
25秒前
25秒前
28秒前
29秒前
宇文千万发布了新的文献求助10
30秒前
31秒前
沉静傲易完成签到,获得积分10
33秒前
geold发布了新的文献求助10
34秒前
浅斟低唱发布了新的文献求助10
35秒前
xiaxiao应助今天也爱看文献采纳,获得200
36秒前
anhuiwsy完成签到 ,获得积分10
37秒前
37秒前
王王碎冰冰完成签到,获得积分10
39秒前
虚心的寒梦完成签到,获得积分10
40秒前
独特的忆彤完成签到 ,获得积分10
40秒前
41秒前
大胆的忆寒完成签到 ,获得积分10
41秒前
开心的谷兰完成签到,获得积分10
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678075
求助须知:如何正确求助?哪些是违规求助? 3231604
关于积分的说明 9798557
捐赠科研通 2942758
什么是DOI,文献DOI怎么找? 1613527
邀请新用户注册赠送积分活动 761619
科研通“疑难数据库(出版商)”最低求助积分说明 737025