亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual Track Feature Fusion Network for ASD Detection using Swin Transformers and Convolutional Neural Network

计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 人工神经网络 对偶(语法数字) 工程类 电气工程 文学类 艺术 电压
作者
Menaka Radhakrishnan,R. Karthik,Saranya Shanmugam,Aneesh Jayan Prabhu,Balamadhan Sivaraman,Aishwar Haris Janarthanam
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4341529/v1
摘要

Abstract Early diagnosis of Autism Spectrum Disorder (ASD) plays a crucial role in enriching a child's development, particularly in improving social communication, language development, and addressing behavioural challenges. Early signs of autism may be observable in childhood, but a formal diagnosis often occurs later in life. Behavioural-based assessments, such as the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Revised (ADOS-R), are currently used for diagnosing ASD. These methods of diagnosis are time-consuming and require trained professionals. Due to these disadvantages of the traditional method of diagnosis, deep learning is used, where feature extraction is done automatically from Magnetic Resonance Imaging (MRI) data, eliminating the reliance on subjective pre-defined features. This advancement not only captures subtle information that may be missed by human-defined features but also enhances accuracy significantly. The dataset comprises of axial view of MRI images from ABIDE-I dataset from Autism Brain Imaging Data Exchange (ABIDE) database. This study proposes a dual-track feature fusion network architecture comprising Swin Transformer and customised Convolutional Neural Network (CNN) for precise classification. Swin Transformers excel in capturing long-range dependencies within images, facilitating a deeper understanding of interrelations among different image components. Concurrently, CNNs are adept at extracting local features, thus contributing to improved classification performance by considering both local and global features. The experimental outcomes highlight the efficacy of the proposed feature fusion network, showcasing an accuracy rate of 98.7%, precision of 98.12%, recall of 98.77%, and an F1-score of 98.65% upon evaluation using the ABIDE dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
49秒前
暴躁的胡萝卜完成签到,获得积分10
50秒前
54秒前
57秒前
通科研完成签到 ,获得积分10
1分钟前
Hasee完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
情怀应助十三采纳,获得10
2分钟前
3分钟前
十三发布了新的文献求助10
3分钟前
3分钟前
默默尔安完成签到 ,获得积分10
3分钟前
MichaeliaLi发布了新的文献求助10
3分钟前
4分钟前
5分钟前
田様应助lzlzq采纳,获得10
5分钟前
MichaeliaLi完成签到,获得积分20
5分钟前
5分钟前
沉默的面包完成签到,获得积分10
5分钟前
自信松思完成签到 ,获得积分10
5分钟前
5分钟前
lzlzq发布了新的文献求助10
5分钟前
lzlzq完成签到,获得积分10
6分钟前
6分钟前
WerWu完成签到,获得积分10
6分钟前
Vvvkkk发布了新的文献求助100
6分钟前
gszy1975发布了新的文献求助10
6分钟前
7分钟前
7分钟前
可靠的书桃完成签到 ,获得积分10
7分钟前
老石完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI40应助繁星采纳,获得10
8分钟前
8分钟前
繁星发布了新的文献求助10
8分钟前
jfc完成签到 ,获得积分10
9分钟前
9分钟前
You发布了新的文献求助10
9分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064517
关于积分的说明 9088231
捐赠科研通 2755148
什么是DOI,文献DOI怎么找? 1511818
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473