CETP: A novel semi-supervised framework based on contrastive pre-training for imbalanced encrypted traffic classification

计算机科学 培训(气象学) 加密 人工智能 机器学习 计算机安全 物理 气象学
作者
Xinjie Lin,Longtao He,Gaopeng Gou,Jing Yu,Zhong Guan,Xiang Li,Juncheng Guo,Gang Xiong
出处
期刊:Computers & Security [Elsevier BV]
卷期号:143: 103892-103892 被引量:3
标识
DOI:10.1016/j.cose.2024.103892
摘要

Encrypted traffic classification (ETC) requires differentiated and robust traffic representation captured from content-agnostic and imbalanced traffic data for accurate classification, which is challenging but indispensable for enabling network security and network management. Some existing deep-learning based ETC approaches have achieved promising results, but have limitations in real-world network environments: 1) label bias caused by traffic class imbalance and 2) traffic homogeneity due to component sharing. How to leverage open-domain unlabeled imbalanced traffic data to learn representation with strong generalization ability remains a key challenge. In this paper, we propose a novel imbalanced traffic representation model, called Contrastive Encrypted Traffic Pre-training (CETP), which pre-trains deep multi-granularity traffic representation from imbalanced data without directly using application labels. The pre-trained model can be further mitigated against label bias due to imbalance by semi-supervised continual fine-tuning via pseudo-label iterations and dynamic loss-weighting algorithms. CETP achieves state-of-the-art performance across four imbalanced encrypted traffic classification tasks, remarkably improving the F1 to 96.31% (2.74%↑) for CP-Android, 93.86% (3.58%↑) for CIC-2019, and 84.16% (10.19%↑) for ISCX-VPN. Meanwhile, we further validate the effectiveness of CETP in QUIC-based imbalanced encrypted traffic. Notably, we verify through analytical experiments that CETP not only effectively relieves label bias and homogeneous flow misclassification, but also extends to ETC methods with diverse feature extractors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光襄发布了新的文献求助10
1秒前
伶俐凌瑶完成签到 ,获得积分10
2秒前
3秒前
小蘑菇应助素简采纳,获得10
3秒前
4秒前
雨天完成签到,获得积分10
5秒前
5秒前
wen完成签到,获得积分10
6秒前
Chovy关注了科研通微信公众号
7秒前
雪野发布了新的文献求助10
8秒前
万邦德完成签到,获得积分10
8秒前
刘香发布了新的文献求助10
8秒前
8秒前
sln发布了新的文献求助10
9秒前
9秒前
小希发布了新的文献求助20
9秒前
爆米花应助小杜小杜采纳,获得10
9秒前
ranjack完成签到,获得积分10
9秒前
zxl发布了新的文献求助10
10秒前
你说额完成签到,获得积分10
10秒前
安乐不疲完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助20
11秒前
鳗鱼笑翠发布了新的文献求助10
12秒前
隐形曼青应助欧皇采纳,获得10
13秒前
Epiphany完成签到,获得积分10
13秒前
13秒前
13秒前
你说额发布了新的文献求助10
13秒前
14秒前
liyiliyi117完成签到,获得积分10
15秒前
浮游应助年轻的树叶采纳,获得10
15秒前
择天莫雨发布了新的文献求助10
16秒前
sln完成签到,获得积分10
16秒前
陈楷完成签到,获得积分10
16秒前
16秒前
0000完成签到,获得积分10
17秒前
17秒前
zy发布了新的文献求助10
17秒前
totoro发布了新的文献求助10
18秒前
科目三应助深情的梦寒采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015778
求助须知:如何正确求助?哪些是违规求助? 4256063
关于积分的说明 13263449
捐赠科研通 4059993
什么是DOI,文献DOI怎么找? 2220536
邀请新用户注册赠送积分活动 1229806
关于科研通互助平台的介绍 1152495