亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CETP: A novel semi-supervised framework based on contrastive pre-training for imbalanced encrypted traffic classification

计算机科学 培训(气象学) 加密 人工智能 机器学习 计算机安全 物理 气象学
作者
Xinjie Lin,Longtao He,Gaopeng Gou,Jing Yu,Zhong Guan,Xiang Li,Juncheng Guo,Gang Xiong
出处
期刊:Computers & Security [Elsevier]
卷期号:143: 103892-103892 被引量:8
标识
DOI:10.1016/j.cose.2024.103892
摘要

Encrypted traffic classification (ETC) requires differentiated and robust traffic representation captured from content-agnostic and imbalanced traffic data for accurate classification, which is challenging but indispensable for enabling network security and network management. Some existing deep-learning based ETC approaches have achieved promising results, but have limitations in real-world network environments: 1) label bias caused by traffic class imbalance and 2) traffic homogeneity due to component sharing. How to leverage open-domain unlabeled imbalanced traffic data to learn representation with strong generalization ability remains a key challenge. In this paper, we propose a novel imbalanced traffic representation model, called Contrastive Encrypted Traffic Pre-training (CETP), which pre-trains deep multi-granularity traffic representation from imbalanced data without directly using application labels. The pre-trained model can be further mitigated against label bias due to imbalance by semi-supervised continual fine-tuning via pseudo-label iterations and dynamic loss-weighting algorithms. CETP achieves state-of-the-art performance across four imbalanced encrypted traffic classification tasks, remarkably improving the F1 to 96.31% (2.74%↑) for CP-Android, 93.86% (3.58%↑) for CIC-2019, and 84.16% (10.19%↑) for ISCX-VPN. Meanwhile, we further validate the effectiveness of CETP in QUIC-based imbalanced encrypted traffic. Notably, we verify through analytical experiments that CETP not only effectively relieves label bias and homogeneous flow misclassification, but also extends to ETC methods with diverse feature extractors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哇了哇发布了新的文献求助10
5秒前
dlfg发布了新的文献求助10
5秒前
5秒前
舒适砖家发布了新的文献求助10
9秒前
20秒前
22秒前
冷风寒清完成签到 ,获得积分10
27秒前
冷风寒清关注了科研通微信公众号
33秒前
鲜橙完成签到 ,获得积分10
35秒前
35秒前
38秒前
廉6666发布了新的文献求助10
42秒前
bare完成签到 ,获得积分10
42秒前
杨怀托发布了新的文献求助10
42秒前
lin完成签到,获得积分10
43秒前
ding应助廉6666采纳,获得10
46秒前
51秒前
华仔应助decade采纳,获得30
58秒前
59秒前
清爽冬莲完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
售后延长发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
晴雨天完成签到 ,获得积分10
1分钟前
1分钟前
Liii完成签到 ,获得积分10
1分钟前
jlw完成签到,获得积分10
1分钟前
1分钟前
陈俐俐完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
manjusaka发布了新的文献求助10
1分钟前
Hello应助李博士采纳,获得10
1分钟前
lilian完成签到,获得积分10
1分钟前
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988