CETP: A novel semi-supervised framework based on contrastive pre-training for imbalanced encrypted traffic classification

计算机科学 培训(气象学) 加密 人工智能 机器学习 计算机安全 气象学 物理
作者
Xinjie Lin,Longtao He,Gaopeng Gou,Jing Yu,Zhong Guan,Xiang Li,Juncheng Guo,Gang Xiong
出处
期刊:Computers & Security [Elsevier]
卷期号:143: 103892-103892
标识
DOI:10.1016/j.cose.2024.103892
摘要

Encrypted traffic classification (ETC) requires differentiated and robust traffic representation captured from content-agnostic and imbalanced traffic data for accurate classification, which is challenging but indispensable for enabling network security and network management. Some existing deep-learning based ETC approaches have achieved promising results, but have limitations in real-world network environments: 1) label bias caused by traffic class imbalance and 2) traffic homogeneity due to component sharing. How to leverage open-domain unlabeled imbalanced traffic data to learn representation with strong generalization ability remains a key challenge. In this paper, we propose a novel imbalanced traffic representation model, called Contrastive Encrypted Traffic Pre-training (CETP), which pre-trains deep multi-granularity traffic representation from imbalanced data without directly using application labels. The pre-trained model can be further mitigated against label bias due to imbalance by semi-supervised continual fine-tuning via pseudo-label iterations and dynamic loss-weighting algorithms. CETP achieves state-of-the-art performance across four imbalanced encrypted traffic classification tasks, remarkably improving the F1 to 96.31% (2.74%↑) for CP-Android, 93.86% (3.58%↑) for CIC-2019, and 84.16% (10.19%↑) for ISCX-VPN. Meanwhile, we further validate the effectiveness of CETP in QUIC-based imbalanced encrypted traffic. Notably, we verify through analytical experiments that CETP not only effectively relieves label bias and homogeneous flow misclassification, but also extends to ETC methods with diverse feature extractors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
昏睡的安露完成签到,获得积分10
1秒前
幽默的谷梦完成签到,获得积分10
2秒前
老中医发布了新的文献求助10
2秒前
2秒前
杰Sir发布了新的文献求助10
3秒前
3秒前
愤怒的超级兵完成签到,获得积分20
4秒前
娃haha完成签到,获得积分10
4秒前
Owen应助可可采纳,获得10
5秒前
达啦崩啦完成签到 ,获得积分10
5秒前
儒雅凛完成签到,获得积分10
5秒前
彭于晏应助淡然的书本采纳,获得10
5秒前
6秒前
6秒前
simon完成签到,获得积分10
6秒前
威武十八发布了新的文献求助10
7秒前
fanyay关注了科研通微信公众号
7秒前
哈哈发布了新的文献求助10
7秒前
zhouzhou发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得10
8秒前
xjcy应助科研通管家采纳,获得20
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
wj发布了新的文献求助10
10秒前
桐桐应助愤怒的超级兵采纳,获得10
11秒前
11秒前
未知用户完成签到,获得积分10
11秒前
气泡水发布了新的文献求助10
12秒前
13秒前
simon发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419