CETP: A novel semi-supervised framework based on contrastive pre-training for imbalanced encrypted traffic classification

计算机科学 培训(气象学) 加密 人工智能 机器学习 计算机安全 物理 气象学
作者
Xinjie Lin,Longtao He,Gaopeng Gou,Jing Yu,Zhong Guan,Xiang Li,Juncheng Guo,Gang Xiong
出处
期刊:Computers & Security [Elsevier]
卷期号:143: 103892-103892 被引量:8
标识
DOI:10.1016/j.cose.2024.103892
摘要

Encrypted traffic classification (ETC) requires differentiated and robust traffic representation captured from content-agnostic and imbalanced traffic data for accurate classification, which is challenging but indispensable for enabling network security and network management. Some existing deep-learning based ETC approaches have achieved promising results, but have limitations in real-world network environments: 1) label bias caused by traffic class imbalance and 2) traffic homogeneity due to component sharing. How to leverage open-domain unlabeled imbalanced traffic data to learn representation with strong generalization ability remains a key challenge. In this paper, we propose a novel imbalanced traffic representation model, called Contrastive Encrypted Traffic Pre-training (CETP), which pre-trains deep multi-granularity traffic representation from imbalanced data without directly using application labels. The pre-trained model can be further mitigated against label bias due to imbalance by semi-supervised continual fine-tuning via pseudo-label iterations and dynamic loss-weighting algorithms. CETP achieves state-of-the-art performance across four imbalanced encrypted traffic classification tasks, remarkably improving the F1 to 96.31% (2.74%↑) for CP-Android, 93.86% (3.58%↑) for CIC-2019, and 84.16% (10.19%↑) for ISCX-VPN. Meanwhile, we further validate the effectiveness of CETP in QUIC-based imbalanced encrypted traffic. Notably, we verify through analytical experiments that CETP not only effectively relieves label bias and homogeneous flow misclassification, but also extends to ETC methods with diverse feature extractors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sciDoge完成签到,获得积分10
1秒前
超级安荷发布了新的文献求助10
1秒前
2秒前
一只耳发布了新的文献求助10
3秒前
glacier发布了新的文献求助10
5秒前
KYDZZ应助知世耶采纳,获得10
6秒前
7秒前
小蘑菇应助sun采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
科研小菜发布了新的文献求助20
13秒前
shhoing应助Bill采纳,获得10
13秒前
14秒前
123完成签到 ,获得积分10
14秒前
KUN完成签到,获得积分10
15秒前
liberal完成签到,获得积分10
16秒前
16秒前
16秒前
燕双鹰完成签到,获得积分10
17秒前
hahaha完成签到,获得积分20
17秒前
丘比特应助fffgz采纳,获得10
17秒前
17秒前
熊风发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
hahaha发布了新的文献求助10
20秒前
陈帅洲发布了新的文献求助10
21秒前
本宫还能学完成签到,获得积分10
22秒前
领导范儿应助成就的涵菡采纳,获得10
22秒前
lingjunjie发布了新的文献求助10
22秒前
麦子完成签到,获得积分10
23秒前
sun发布了新的文献求助10
24秒前
123456发布了新的文献求助10
24秒前
abu发布了新的文献求助10
24秒前
25秒前
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937