已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Output Performance of Triboelectric Nanogenerators Using Highly Representative Data‐Based Neural Networks

摩擦电效应 人工神经网络 材料科学 计算机科学 人工智能 复合材料
作者
Junxiang Zhang,Hao Zhou,Jinkai Chen,Junchao Wang
出处
期刊:Energy technology [Wiley]
标识
DOI:10.1002/ente.202400402
摘要

Triboelectric nanogenerators (TENGs) are promising potential sustainable power sources for wireless sensing networks within the Internet of Things (IoT) realm. Developing an efficient TENG evaluation model, characterized by high speed, accuracy, and representativeness, facilitates its integration into practical applications, which is urgent and lack of investigation currently. Herein, an artificial intelligence (AI) based evaluation model is developed to predict the performance of freestanding rotational TENGs (FR‐TENGs) for demonstration. An accurate and representative train dataset is essential for development of AI‐based evaluation model, which has been generated using finite element analysis and equivalent circuit simulation alongside the non‐dominated sorting genetic algorithm II. Through comprehensive experiments and simulations, the accuracy of the model has been verified in predicting the power output performance of FR‐TENGs, which has 99.6% (three design parameters) and 99.2% (seven design parameters) maximum train set accuracy. More importantly, the predicted results from the AI‐based evaluation model have notably expanded the coverage of data and significantly expedited the generation time from days to seconds. Herein, the use of AI in assessing the performance of TENGs is enhanced. The TENG design process can be significantly simplified, while maintaining a high evaluation model accuracy, thus promising advancements of IoT applications in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐易完成签到 ,获得积分10
1秒前
YOLO完成签到,获得积分10
6秒前
w5566完成签到 ,获得积分10
7秒前
233完成签到 ,获得积分10
11秒前
12秒前
李健的小迷弟应助吴祥佳采纳,获得30
12秒前
少川完成签到 ,获得积分10
14秒前
16秒前
17秒前
心动nofear完成签到 ,获得积分20
18秒前
wuyin发布了新的文献求助10
19秒前
共享精神应助hhchhcmxhf采纳,获得10
20秒前
Soey发布了新的文献求助10
21秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
Ray羽曦~完成签到 ,获得积分10
26秒前
书中魂我自不理会完成签到 ,获得积分10
27秒前
GXY完成签到 ,获得积分10
27秒前
27秒前
心动nofear发布了新的文献求助10
28秒前
28秒前
端庄的飞阳完成签到 ,获得积分10
29秒前
yps完成签到 ,获得积分10
29秒前
Emon发布了新的文献求助10
29秒前
29秒前
YXL发布了新的文献求助10
33秒前
34秒前
十三完成签到 ,获得积分10
34秒前
ESLG发布了新的文献求助10
39秒前
望远山完成签到,获得积分10
43秒前
岛不言发布了新的文献求助10
43秒前
李健应助Fx采纳,获得10
45秒前
hello2001完成签到 ,获得积分10
47秒前
48秒前
48秒前
SASI完成签到 ,获得积分10
48秒前
49秒前
50秒前
科研通AI2S应助江夏采纳,获得10
50秒前
皛皛完成签到 ,获得积分10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210