An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 机器学习 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:6
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
..发布了新的文献求助10
1秒前
科研通AI2S应助语言的浅浅采纳,获得10
1秒前
科研通AI2S应助nn采纳,获得10
3秒前
橘绿发布了新的文献求助10
5秒前
5秒前
7秒前
9秒前
9秒前
9秒前
10秒前
英姑应助好多鱼采纳,获得10
10秒前
12秒前
好久不见发布了新的文献求助10
13秒前
榆树畔发布了新的文献求助10
13秒前
13秒前
小蘑菇应助1111采纳,获得10
13秒前
英俊的铭应助哇咔咔采纳,获得10
14秒前
林木木发布了新的文献求助10
14秒前
Sugaryeah完成签到,获得积分10
15秒前
Lee6655完成签到,获得积分10
15秒前
15秒前
121314wld发布了新的文献求助10
15秒前
bb发布了新的文献求助10
16秒前
毛豆应助21c采纳,获得30
16秒前
16秒前
大威天龙完成签到,获得积分10
17秒前
XudongHou发布了新的文献求助30
18秒前
mhl11应助悦耳半梦采纳,获得10
18秒前
传奇3应助parpate采纳,获得10
18秒前
19秒前
橘绿发布了新的文献求助10
19秒前
丘比特应助赵zhao采纳,获得10
19秒前
我是老大应助赵zhao采纳,获得10
19秒前
妮儿发布了新的文献求助10
19秒前
小蘑菇应助BABY五齿采纳,获得10
20秒前
20秒前
21秒前
yatou5651发布了新的文献求助10
22秒前
成就梦松完成签到,获得积分10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300441
求助须知:如何正确求助?哪些是违规求助? 2935034
关于积分的说明 8471600
捐赠科研通 2608634
什么是DOI,文献DOI怎么找? 1424341
科研通“疑难数据库(出版商)”最低求助积分说明 661991
邀请新用户注册赠送积分活动 645653