An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 7130-7144 被引量:37
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system [Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN)] inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓公子发布了新的文献求助30
刚刚
莓莓发布了新的文献求助30
2秒前
2秒前
4秒前
4秒前
5秒前
大道希言发布了新的文献求助10
5秒前
6秒前
一点点脸红完成签到,获得积分10
7秒前
ttjj应助亦玉采纳,获得10
7秒前
yuyan发布了新的文献求助10
7秒前
8秒前
君无戏言发布了新的文献求助10
8秒前
汤鑫发布了新的文献求助10
9秒前
9秒前
土块发布了新的文献求助10
10秒前
10秒前
赘婿应助hudiefeifei306采纳,获得10
10秒前
wanci应助siri1313采纳,获得10
10秒前
感动的薄荷完成签到,获得积分10
11秒前
FashionBoy应助柔弱诗筠采纳,获得10
11秒前
12秒前
科目三应助惠惠采纳,获得30
12秒前
图图发布了新的文献求助10
13秒前
隐形曼青应助zxm采纳,获得10
15秒前
15秒前
奶油苏苏糖完成签到,获得积分20
15秒前
18秒前
思源应助Qiu采纳,获得10
19秒前
19秒前
20秒前
完美世界应助qq78910采纳,获得10
20秒前
英姑应助123采纳,获得10
20秒前
朴实的傲之完成签到,获得积分10
20秒前
dawnstar完成签到 ,获得积分10
20秒前
烟花应助欠虐宝宝采纳,获得10
20秒前
21秒前
21秒前
21秒前
花酒发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791