An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wfafggga发布了新的文献求助10
1秒前
1秒前
yuki发布了新的文献求助10
1秒前
咕_完成签到 ,获得积分10
1秒前
安谢完成签到,获得积分10
2秒前
miro完成签到,获得积分10
2秒前
科研专家完成签到 ,获得积分10
2秒前
无私的芹应助Liu采纳,获得30
2秒前
晓筠完成签到,获得积分10
2秒前
愫浅完成签到 ,获得积分10
2秒前
何波完成签到,获得积分20
3秒前
袁同学完成签到,获得积分10
3秒前
冰雪人发布了新的文献求助10
3秒前
蒋若风完成签到,获得积分10
3秒前
crescendo完成签到,获得积分10
4秒前
4秒前
keyana25完成签到,获得积分10
4秒前
火星天完成签到,获得积分10
6秒前
刚果王子发布了新的文献求助20
6秒前
替我活着完成签到,获得积分10
6秒前
淡淡孤丝完成签到,获得积分20
6秒前
科研小白完成签到,获得积分10
6秒前
朱古力完成签到 ,获得积分10
6秒前
Akim应助Jj采纳,获得10
6秒前
土豆子完成签到,获得积分10
7秒前
王淳发布了新的文献求助10
7秒前
Akim应助kybzg采纳,获得10
8秒前
科研小白白完成签到 ,获得积分10
9秒前
别喝他的酒完成签到,获得积分10
9秒前
10秒前
杨文彬完成签到,获得积分20
10秒前
cobo完成签到,获得积分10
11秒前
酷酷的树叶完成签到 ,获得积分10
11秒前
11秒前
木森完成签到,获得积分10
12秒前
闵夏完成签到,获得积分10
13秒前
Somnolence咩完成签到,获得积分10
13秒前
标致小甜瓜完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051