An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 7130-7144 被引量:37
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system [Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN)] inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻我完成签到,获得积分10
3秒前
代桃发布了新的文献求助10
4秒前
4秒前
陈_Ccc完成签到 ,获得积分10
6秒前
wp4455777完成签到,获得积分10
6秒前
醉熏的菲鹰完成签到 ,获得积分10
6秒前
栗子完成签到,获得积分10
12秒前
研友_VZGVzn完成签到,获得积分10
14秒前
Criminology34应助青稞人采纳,获得10
16秒前
代桃完成签到,获得积分10
18秒前
风-FBDD完成签到,获得积分10
18秒前
Asumita完成签到,获得积分10
19秒前
优雅芷波完成签到 ,获得积分10
20秒前
wwww发布了新的文献求助10
22秒前
23秒前
xiaoliu完成签到,获得积分10
24秒前
kyt_vip完成签到,获得积分10
27秒前
甜甜的平蓝完成签到 ,获得积分10
27秒前
小树完成签到 ,获得积分10
29秒前
去小岛上流浪完成签到,获得积分10
30秒前
文与武完成签到 ,获得积分10
35秒前
在水一方应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
38秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
祁灵枫完成签到,获得积分10
40秒前
特图图应助Brave采纳,获得30
41秒前
CWC完成签到,获得积分10
42秒前
优美的莹芝完成签到,获得积分10
44秒前
盛意完成签到,获得积分10
45秒前
46秒前
Orange应助peili采纳,获得10
47秒前
2025顺顺利利完成签到 ,获得积分10
47秒前
Jerry完成签到 ,获得积分10
48秒前
月夕完成签到 ,获得积分10
49秒前
微雨若,,完成签到 ,获得积分10
50秒前
55秒前
执念完成签到,获得积分10
58秒前
科研通AI2S应助Brave采纳,获得10
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320