An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 机器学习 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yizhen Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Manqing Wang,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxr完成签到 ,获得积分10
2秒前
FashionBoy应助糊涂的服饰采纳,获得10
3秒前
凊嗏淡墨完成签到,获得积分10
4秒前
5秒前
谢花花完成签到 ,获得积分10
5秒前
丹丹完成签到,获得积分10
6秒前
xiao柒柒柒完成签到,获得积分10
6秒前
gslscuer完成签到,获得积分10
6秒前
ChenyuTian完成签到 ,获得积分10
10秒前
11秒前
优雅雁菱完成签到,获得积分10
11秒前
芝麻完成签到,获得积分10
12秒前
13秒前
蓝胖子完成签到 ,获得积分10
13秒前
16秒前
renovel完成签到,获得积分10
17秒前
科研打工人完成签到,获得积分20
19秒前
20秒前
兴奋的定帮完成签到 ,获得积分10
20秒前
高宇航完成签到,获得积分10
21秒前
番茄炒蛋不要番茄le完成签到,获得积分10
22秒前
XCYIN完成签到,获得积分10
22秒前
xxx完成签到,获得积分10
23秒前
无私小小完成签到,获得积分10
24秒前
Bagpipe完成签到 ,获得积分10
25秒前
栗悟饭完成签到,获得积分10
26秒前
XIAO完成签到,获得积分10
27秒前
叶落无痕、完成签到,获得积分10
27秒前
xue完成签到 ,获得积分10
28秒前
刷子完成签到,获得积分10
29秒前
火星上的念桃完成签到 ,获得积分10
34秒前
浅辰完成签到 ,获得积分10
36秒前
lgz完成签到,获得积分10
39秒前
老迟到的幼枫完成签到,获得积分10
39秒前
文刀大可完成签到 ,获得积分10
39秒前
从容芮应助Shawn采纳,获得10
39秒前
李哥完成签到,获得积分10
40秒前
hbuhfl完成签到 ,获得积分10
40秒前
jhcraul完成签到,获得积分10
42秒前
LEOhard完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099821
求助须知:如何正确求助?哪些是违规求助? 2751309
关于积分的说明 7612489
捐赠科研通 2403104
什么是DOI,文献DOI怎么找? 1275188
科研通“疑难数据库(出版商)”最低求助积分说明 616293
版权声明 599053